Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220966579> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4220966579 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Atmospheric concentrations of South Asian anthropogenic aerosols and their transport play a key role in the regional hydrological cycle. Here, we use the ECHAM6-HAMMOZ chemistryâclimate model to show the structure and implications of the transport pathways of these aerosols during spring (MarchâMay). Our simulations indicate that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean and western Pacific. These aerosols are then lifted into the upper troposphere and lower stratosphere (UTLS) by the ascending branch of the Hadley circulation, where they enter the westerly jet. They are further transported to the Southern Hemisphere (<span class=inline-formula>â¼15</span>â30<span class=inline-formula><sup>â</sup></span>âS) and downward (320â340âK) via westerly ducts over the tropical Atlantic (5<span class=inline-formula><sup>â</sup></span>âSâ5<span class=inline-formula><sup>â</sup></span>âN, 10â40<span class=inline-formula><sup>â</sup></span>âW) and Pacific (5<span class=inline-formula><sup>â</sup></span>âSâ5<span class=inline-formula><sup>â</sup></span>âN, 95â140<span class=inline-formula><sup>â</sup></span>âE). The carbonaceous aerosols are also transported to the Arctic, leading to local heating (0.08â0.3âK per month, an increase by 10â%â60â%). The presence of anthropogenic aerosols causes a negative radiative forcing (RF) at the top of the atmosphere (TOA) (<span class=inline-formula>â</span>0.90â<span class=inline-formula>±</span>â0.089âWâm<span class=inline-formula><sup>â2</sup>)</span> and surface (<span class=inline-formula>â</span>5.87â<span class=inline-formula>±</span>â0.31âWâm<span class=inline-formula><sup>â2</sup>)</span> and atmospheric warming (<span class=inline-formula>+</span>4.96â<span class=inline-formula>±</span>â0.24âWâm<span class=inline-formula><sup>â2</sup>)</span> over South Asia (60â90<span class=inline-formula><sup>â</sup></span>âE, 8â23<span class=inline-formula><sup>â</sup></span>âN), except over the Indo-Gangetic Plain (75â83<span class=inline-formula><sup>â</sup></span>âE, 23â30<span class=inline-formula><sup>â</sup></span>âN), where RF at the TOA is positive (<span class=inline-formula>+</span>1.27â<span class=inline-formula>±</span>â0.16âWâm<span class=inline-formula><sup>â2</sup>)</span> due to large concentrations of absorbing aerosols. The carbonaceous aerosols lead to in-atmospheric heating along the aerosol column extending from the boundary layer to the upper troposphere (0.1 to 0.4âK per month, increase by 4â%â60â%) and in the lower stratosphere at 40â90<span class=inline-formula><sup>â</sup></span>âN (0.02 to 0.3âK per month, increase by 10â%â60â%). The increase in tropospheric heating due to aerosols results in an increase in water vapor concentrations, which are then transported from the northern Indian Oceanâwestern Pacific to the UTLS over 45â45<span class=inline-formula><sup>â</sup></span>âN (increasing water vapor by 1â%â10â%)." @default.
- W4220966579 created "2022-04-03" @default.
- W4220966579 creator A5072508789 @default.
- W4220966579 date "2022-03-11" @default.
- W4220966579 modified "2023-09-30" @default.
- W4220966579 title "Comment on acp-2021-969" @default.
- W4220966579 doi "https://doi.org/10.5194/acp-2021-969-rc2" @default.
- W4220966579 hasPublicationYear "2022" @default.
- W4220966579 type Work @default.
- W4220966579 citedByCount "0" @default.
- W4220966579 crossrefType "peer-review" @default.
- W4220966579 hasAuthorship W4220966579A5072508789 @default.
- W4220966579 hasBestOaLocation W42209665791 @default.
- W4220966579 hasConcept C121332964 @default.
- W4220966579 hasConcept C127313418 @default.
- W4220966579 hasConcept C127413603 @default.
- W4220966579 hasConcept C147176958 @default.
- W4220966579 hasConcept C153294291 @default.
- W4220966579 hasConcept C163861444 @default.
- W4220966579 hasConcept C2778753569 @default.
- W4220966579 hasConcept C2779345167 @default.
- W4220966579 hasConcept C39432304 @default.
- W4220966579 hasConcept C49204034 @default.
- W4220966579 hasConcept C508106653 @default.
- W4220966579 hasConcept C65440619 @default.
- W4220966579 hasConcept C9075549 @default.
- W4220966579 hasConcept C91586092 @default.
- W4220966579 hasConceptScore W4220966579C121332964 @default.
- W4220966579 hasConceptScore W4220966579C127313418 @default.
- W4220966579 hasConceptScore W4220966579C127413603 @default.
- W4220966579 hasConceptScore W4220966579C147176958 @default.
- W4220966579 hasConceptScore W4220966579C153294291 @default.
- W4220966579 hasConceptScore W4220966579C163861444 @default.
- W4220966579 hasConceptScore W4220966579C2778753569 @default.
- W4220966579 hasConceptScore W4220966579C2779345167 @default.
- W4220966579 hasConceptScore W4220966579C39432304 @default.
- W4220966579 hasConceptScore W4220966579C49204034 @default.
- W4220966579 hasConceptScore W4220966579C508106653 @default.
- W4220966579 hasConceptScore W4220966579C65440619 @default.
- W4220966579 hasConceptScore W4220966579C9075549 @default.
- W4220966579 hasConceptScore W4220966579C91586092 @default.
- W4220966579 hasLocation W42209665791 @default.
- W4220966579 hasOpenAccess W4220966579 @default.
- W4220966579 hasPrimaryLocation W42209665791 @default.
- W4220966579 hasRelatedWork W1618364171 @default.
- W4220966579 hasRelatedWork W1869472349 @default.
- W4220966579 hasRelatedWork W2149357482 @default.
- W4220966579 hasRelatedWork W2207393060 @default.
- W4220966579 hasRelatedWork W3012247233 @default.
- W4220966579 hasRelatedWork W3087138099 @default.
- W4220966579 hasRelatedWork W4221077947 @default.
- W4220966579 hasRelatedWork W4241688839 @default.
- W4220966579 hasRelatedWork W4249018675 @default.
- W4220966579 hasRelatedWork W4251583932 @default.
- W4220966579 isParatext "false" @default.
- W4220966579 isRetracted "false" @default.
- W4220966579 workType "peer-review" @default.