Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220972972> ?p ?o ?g. }
- W4220972972 endingPage "116860" @default.
- W4220972972 startingPage "116860" @default.
- W4220972972 abstract "Digital watermarking schemes based on a single value of embedding strength do not take into account the local characteristics of the host signal for watermark embedding. Consequently, striking a balance between imperceptibility and the robustness of the watermarking scheme becomes a challenging task. The use of multiple values of the embedding strength provides a solution to this problem. Multiple embedding strength-based watermarking schemes often deploy meta-heuristic techniques to look for locally optimal values of the embedding strength. However, meta-heuristic techniques being inherently slow, such watermarking schemes cannot be applied in real-time applications. This paper proposes MantaRayWmark—a novel image adaptive watermarking scheme that uses Manta Ray Foraging Optimization (MRFO) to optimize the locally relevant multiple embedding strengths (MES) for balancing the imperceptibility and robustness. However, the time-intensive MRFO-based optimization is carried out only once to train a bi-directional ELM (B-ELM) for a set of images. Each training image is subjected to 4-level DTCWT to produce approximation coefficients. For B-ELM training, the approximation coefficients act as the input features and the corresponding MES values (obtained by way of MRFO using imperceptibility and robustness as the optimization criteria) act as the target outputs. Subsequently, given a new image, the trained B-ELM is used to predict the optimized multiple embedding strengths. For watermark embedding, an image is transformed using 4-level DTCWT and the resulting approximation sub-band matrix is decomposed using SVD to get the principal component (PC) matrix. To avoid the false-positive problem, a binary watermark is inserted into the PC matrix using the MES. To ensure the robustness of the proposed scheme against geometric attacks, we have deployed a novel convolution neural network (ConvNet) based geometric correction procedure. Further, image authentication is achieved by applying SVD-based hashing on the watermarked image. To ensure the security of watermark, the watermark is scrambled using transposition cipher. Experimental results reveal that MantaRayWmark achieves a high degree of watermark recoverability from the signed image in the presence of a number of common geometric and image processing attacks, thus proving its robustness. The results also demonstrate the superiority of the proposed MantaRayWmark when compared to the existing state-of-the-art schemes in terms of robustness and imperceptibility. The proposed scheme being time-efficient may find use its in various multimedia applications." @default.
- W4220972972 created "2022-04-03" @default.
- W4220972972 creator A5031077473 @default.
- W4220972972 creator A5049822876 @default.
- W4220972972 creator A5076053477 @default.
- W4220972972 creator A5076334343 @default.
- W4220972972 date "2022-08-01" @default.
- W4220972972 modified "2023-10-09" @default.
- W4220972972 title "MantaRayWmark: An image adaptive multiple embedding strength optimization based watermarking using Manta Ray Foraging and bi-directional ELM" @default.
- W4220972972 cites W1649208874 @default.
- W4220972972 cites W1968265196 @default.
- W4220972972 cites W1973433968 @default.
- W4220972972 cites W2005295549 @default.
- W4220972972 cites W2006831356 @default.
- W4220972972 cites W2010425280 @default.
- W4220972972 cites W2018332268 @default.
- W4220972972 cites W2030753971 @default.
- W4220972972 cites W2035026907 @default.
- W4220972972 cites W2063358027 @default.
- W4220972972 cites W2084897383 @default.
- W4220972972 cites W2103320971 @default.
- W4220972972 cites W2116467012 @default.
- W4220972972 cites W2129534840 @default.
- W4220972972 cites W2133665775 @default.
- W4220972972 cites W2136506345 @default.
- W4220972972 cites W2141695047 @default.
- W4220972972 cites W2187183065 @default.
- W4220972972 cites W2203655836 @default.
- W4220972972 cites W2302241271 @default.
- W4220972972 cites W2488884246 @default.
- W4220972972 cites W2551529042 @default.
- W4220972972 cites W2567553000 @default.
- W4220972972 cites W2736265182 @default.
- W4220972972 cites W2737152264 @default.
- W4220972972 cites W2758868725 @default.
- W4220972972 cites W2770456481 @default.
- W4220972972 cites W2775163033 @default.
- W4220972972 cites W2789267863 @default.
- W4220972972 cites W2801854599 @default.
- W4220972972 cites W2808671558 @default.
- W4220972972 cites W2883710213 @default.
- W4220972972 cites W2883747290 @default.
- W4220972972 cites W2899310850 @default.
- W4220972972 cites W2905384029 @default.
- W4220972972 cites W2911250344 @default.
- W4220972972 cites W2922777403 @default.
- W4220972972 cites W2963745697 @default.
- W4220972972 cites W2964142285 @default.
- W4220972972 cites W2969520439 @default.
- W4220972972 cites W2982453621 @default.
- W4220972972 cites W2989416700 @default.
- W4220972972 cites W3008327699 @default.
- W4220972972 cites W3011958679 @default.
- W4220972972 cites W3029393844 @default.
- W4220972972 cites W3081436782 @default.
- W4220972972 cites W3083594188 @default.
- W4220972972 cites W3109222419 @default.
- W4220972972 cites W3116958493 @default.
- W4220972972 cites W3120383396 @default.
- W4220972972 cites W3131331144 @default.
- W4220972972 cites W849365651 @default.
- W4220972972 doi "https://doi.org/10.1016/j.eswa.2022.116860" @default.
- W4220972972 hasPublicationYear "2022" @default.
- W4220972972 type Work @default.
- W4220972972 citedByCount "10" @default.
- W4220972972 countsByYear W42209729722022 @default.
- W4220972972 countsByYear W42209729722023 @default.
- W4220972972 crossrefType "journal-article" @default.
- W4220972972 hasAuthorship W4220972972A5031077473 @default.
- W4220972972 hasAuthorship W4220972972A5049822876 @default.
- W4220972972 hasAuthorship W4220972972A5076053477 @default.
- W4220972972 hasAuthorship W4220972972A5076334343 @default.
- W4220972972 hasConcept C104317684 @default.
- W4220972972 hasConcept C11413529 @default.
- W4220972972 hasConcept C115961682 @default.
- W4220972972 hasConcept C150817343 @default.
- W4220972972 hasConcept C153180895 @default.
- W4220972972 hasConcept C154945302 @default.
- W4220972972 hasConcept C164112704 @default.
- W4220972972 hasConcept C173801870 @default.
- W4220972972 hasConcept C185592680 @default.
- W4220972972 hasConcept C22789450 @default.
- W4220972972 hasConcept C33923547 @default.
- W4220972972 hasConcept C41008148 @default.
- W4220972972 hasConcept C41608201 @default.
- W4220972972 hasConcept C55493867 @default.
- W4220972972 hasConcept C63479239 @default.
- W4220972972 hasConceptScore W4220972972C104317684 @default.
- W4220972972 hasConceptScore W4220972972C11413529 @default.
- W4220972972 hasConceptScore W4220972972C115961682 @default.
- W4220972972 hasConceptScore W4220972972C150817343 @default.
- W4220972972 hasConceptScore W4220972972C153180895 @default.
- W4220972972 hasConceptScore W4220972972C154945302 @default.
- W4220972972 hasConceptScore W4220972972C164112704 @default.
- W4220972972 hasConceptScore W4220972972C173801870 @default.
- W4220972972 hasConceptScore W4220972972C185592680 @default.
- W4220972972 hasConceptScore W4220972972C22789450 @default.
- W4220972972 hasConceptScore W4220972972C33923547 @default.