Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220973347> ?p ?o ?g. }
- W4220973347 endingPage "454" @default.
- W4220973347 startingPage "433" @default.
- W4220973347 abstract "Summary This study provides an extensive critical review of electromagnetic heating (EMH) methods [inductive heating (IH), low-frequency heating (LFH), and high-frequency heating (HFH)] to highlight their existing challenges in enhanced heavy-oil and oil sands recovery. In general, IH is considered to be less practicable than LFH and HFH. The resistance (ohmic or conduction) heating prevails in LFH while dielectric heating prevails in HFH. Thus, the effectiveness of LFH decreases if reservoir water is overheated to generate steam. Also, the intensity of the energy released and the temperature rise in LFH are not as significant as those in HFH. LFH also fails in penetrating the media with breaks, heterogeneities, and in partially saturated media (e.g., when some oil saturation has been produced). These challenges might somewhat be remedied by HFH at the expense of reducing the electromagnetic (EM) wave penetration depth. The advantages of HFH include remote heating through a desiccated reservoir region around the EM energy source, higher intensity of the energy released and greater temperature rise, and better EM wave penetration through partially saturated media with breaks and heterogeneities. The caveat, however, is that the practical application of HFH could be more expensive than LFH. Besides, the lower depth of EM wave penetration in HFH remains a challenge. During HFH, the temperature increase occurs as a result of the induced molecular rotation in the dielectric material, in particular if the material contains more polar compounds. The polar molecules follow the EM field. This increases the internal molecular friction within the material and generates heat, leading to the rise of temperature. Because the heat generated is a function of the stored (absorbed) energy in the reservoir, the dielectric constant or the real permittivity of the reservoir should be enhanced to enhance the performance of HFH. This ensures that the temperature has risen reasonably in a reasonable amount of time with a reasonable amount of electricity consumption. However, to generate a uniform rise in temperature on a large scale away from the wellbore, the imaginary permittivity of the material should be reasonably lowered, too, for maximizing the penetration of the EM wave (while the real permittivity is an indication of the degree of polarization, the imaginary permittivity is associated with dielectric losses). Lowering the imaginary permittivity away from the wellbore helps minimize the effects of steam condensation (condensate formation retards the EM wave propagation) or delay steam condensation because the reservoir temperature is reduced during the later stages of oil production. The thermal conductivity of the formation should also be enhanced, especially away from the wellbore to generate a more uniform rise in temperature. These three reservoir improvements (enhancing real permittivity, lowering imaginary permittivity, and enhancing thermal conductivity) in an attempt to enhance EMH underpin the rationale behind proposing future optimizations of EMH, and in particular, HFH." @default.
- W4220973347 created "2022-04-03" @default.
- W4220973347 creator A5047171612 @default.
- W4220973347 date "2022-03-24" @default.
- W4220973347 modified "2023-09-25" @default.
- W4220973347 title "Electromagnetic Heating for Heavy-Oil and Bitumen Recovery: Experimental, Numerical, and Pilot Studies" @default.
- W4220973347 cites W1964457543 @default.
- W4220973347 cites W1967893242 @default.
- W4220973347 cites W1969979221 @default.
- W4220973347 cites W1975898422 @default.
- W4220973347 cites W1976578893 @default.
- W4220973347 cites W1978661265 @default.
- W4220973347 cites W1979129217 @default.
- W4220973347 cites W1979691954 @default.
- W4220973347 cites W1979893412 @default.
- W4220973347 cites W1980601335 @default.
- W4220973347 cites W1983881863 @default.
- W4220973347 cites W1987602686 @default.
- W4220973347 cites W1988210462 @default.
- W4220973347 cites W1992858127 @default.
- W4220973347 cites W1993137398 @default.
- W4220973347 cites W1997600117 @default.
- W4220973347 cites W1999209065 @default.
- W4220973347 cites W1999722921 @default.
- W4220973347 cites W2000661392 @default.
- W4220973347 cites W2005416057 @default.
- W4220973347 cites W2008577482 @default.
- W4220973347 cites W2008965785 @default.
- W4220973347 cites W2009226476 @default.
- W4220973347 cites W2010323761 @default.
- W4220973347 cites W2011703042 @default.
- W4220973347 cites W2011931010 @default.
- W4220973347 cites W2013624525 @default.
- W4220973347 cites W2016960528 @default.
- W4220973347 cites W2017201914 @default.
- W4220973347 cites W2023184212 @default.
- W4220973347 cites W2023241734 @default.
- W4220973347 cites W2023921984 @default.
- W4220973347 cites W2027576382 @default.
- W4220973347 cites W2028332644 @default.
- W4220973347 cites W2031087748 @default.
- W4220973347 cites W2032702434 @default.
- W4220973347 cites W2037073478 @default.
- W4220973347 cites W2040102829 @default.
- W4220973347 cites W2041569908 @default.
- W4220973347 cites W2042241774 @default.
- W4220973347 cites W2042773286 @default.
- W4220973347 cites W2043667915 @default.
- W4220973347 cites W2050637145 @default.
- W4220973347 cites W2051514899 @default.
- W4220973347 cites W2052962756 @default.
- W4220973347 cites W2056898145 @default.
- W4220973347 cites W2057289936 @default.
- W4220973347 cites W2057838649 @default.
- W4220973347 cites W2059425097 @default.
- W4220973347 cites W2062645988 @default.
- W4220973347 cites W2064378759 @default.
- W4220973347 cites W2065694806 @default.
- W4220973347 cites W2071736192 @default.
- W4220973347 cites W2073969459 @default.
- W4220973347 cites W2074089226 @default.
- W4220973347 cites W2078770298 @default.
- W4220973347 cites W2079555687 @default.
- W4220973347 cites W2080298011 @default.
- W4220973347 cites W2084958407 @default.
- W4220973347 cites W2085887394 @default.
- W4220973347 cites W2086699104 @default.
- W4220973347 cites W2087452412 @default.
- W4220973347 cites W2087458721 @default.
- W4220973347 cites W2089184431 @default.
- W4220973347 cites W2089802744 @default.
- W4220973347 cites W2090583737 @default.
- W4220973347 cites W2090687147 @default.
- W4220973347 cites W2148929874 @default.
- W4220973347 cites W2247580186 @default.
- W4220973347 cites W2250058048 @default.
- W4220973347 cites W2303295737 @default.
- W4220973347 cites W2318003676 @default.
- W4220973347 cites W2320981703 @default.
- W4220973347 cites W2324566513 @default.
- W4220973347 cites W2408341906 @default.
- W4220973347 cites W2425858393 @default.
- W4220973347 cites W2476370186 @default.
- W4220973347 cites W2477118120 @default.
- W4220973347 cites W2484496945 @default.
- W4220973347 cites W2490689594 @default.
- W4220973347 cites W2611404239 @default.
- W4220973347 cites W2792920274 @default.
- W4220973347 cites W2888590539 @default.
- W4220973347 cites W3004682650 @default.
- W4220973347 cites W318413227 @default.
- W4220973347 cites W4233033715 @default.
- W4220973347 cites W4239146688 @default.
- W4220973347 cites W4241998550 @default.
- W4220973347 cites W2174770690 @default.
- W4220973347 cites W2398129131 @default.
- W4220973347 doi "https://doi.org/10.2118/209194-pa" @default.
- W4220973347 hasPublicationYear "2022" @default.