Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220974364> ?p ?o ?g. }
- W4220974364 endingPage "466" @default.
- W4220974364 startingPage "427" @default.
- W4220974364 abstract "ABSTRACT This study examines whether we can learn from the behavior of blockchain‐based transfers to predict the financing of terrorist attacks. We exploit blockchain transaction transparency to map millions of transfers for hundreds of large on‐chain service providers. The mapped data set permits us to empirically conduct several analyses. First, we analyze abnormal transfer volume in the vicinity of large‐scale highly visible terrorist attacks. We document evidence consistent with heightened activity in coin wallets belonging to unregulated exchanges and mixer services—central to laundering funds between terrorist groups and operatives on the ground. Next, we use forensic accounting techniques to follow the trails of funds associated with the Sri Lanka Easter bombing. Insights from this event corroborate our findings and aid in our construction of a blockchain‐based predictive model. Finally, using machine‐learning algorithms, we demonstrate that fund trails have predictive power in out‐of‐sample analysis. Our study is informative to researchers, regulators, and market players in providing methods for detecting the flow of terrorist funds on blockchain‐based systems using accounting knowledge and techniques." @default.
- W4220974364 created "2022-04-03" @default.
- W4220974364 creator A5014179374 @default.
- W4220974364 creator A5055737890 @default.
- W4220974364 creator A5082980105 @default.
- W4220974364 date "2022-04-13" @default.
- W4220974364 modified "2023-10-18" @default.
- W4220974364 title "Coins for Bombs: The Predictive Ability of On‐Chain Transfers for Terrorist Attacks" @default.
- W4220974364 cites W179922057 @default.
- W4220974364 cites W1995150054 @default.
- W4220974364 cites W2006680549 @default.
- W4220974364 cites W2023220564 @default.
- W4220974364 cites W2043464706 @default.
- W4220974364 cites W2048801439 @default.
- W4220974364 cites W2052711321 @default.
- W4220974364 cites W2054607063 @default.
- W4220974364 cites W2056528415 @default.
- W4220974364 cites W2060181635 @default.
- W4220974364 cites W2061621110 @default.
- W4220974364 cites W2064825270 @default.
- W4220974364 cites W2079569543 @default.
- W4220974364 cites W2084413241 @default.
- W4220974364 cites W2093606067 @default.
- W4220974364 cites W2110540531 @default.
- W4220974364 cites W2124532504 @default.
- W4220974364 cites W2128778916 @default.
- W4220974364 cites W2156330066 @default.
- W4220974364 cites W2303253355 @default.
- W4220974364 cites W2334501456 @default.
- W4220974364 cites W2346569801 @default.
- W4220974364 cites W2486005906 @default.
- W4220974364 cites W2545859524 @default.
- W4220974364 cites W2586694958 @default.
- W4220974364 cites W2808664004 @default.
- W4220974364 cites W2809373714 @default.
- W4220974364 cites W2891972588 @default.
- W4220974364 cites W2912620367 @default.
- W4220974364 cites W2934139585 @default.
- W4220974364 cites W2948783092 @default.
- W4220974364 cites W2979933033 @default.
- W4220974364 cites W3033118097 @default.
- W4220974364 cites W3039363678 @default.
- W4220974364 cites W3100562165 @default.
- W4220974364 cites W3111293199 @default.
- W4220974364 cites W3122391462 @default.
- W4220974364 cites W3123868249 @default.
- W4220974364 cites W3124772058 @default.
- W4220974364 cites W3125062974 @default.
- W4220974364 cites W3125177002 @default.
- W4220974364 cites W3125239153 @default.
- W4220974364 cites W3133379059 @default.
- W4220974364 cites W3150402146 @default.
- W4220974364 cites W3150547458 @default.
- W4220974364 cites W3152791621 @default.
- W4220974364 cites W3201092806 @default.
- W4220974364 cites W4243354998 @default.
- W4220974364 cites W4248369152 @default.
- W4220974364 cites W4310724318 @default.
- W4220974364 cites W4312513554 @default.
- W4220974364 doi "https://doi.org/10.1111/1475-679x.12430" @default.
- W4220974364 hasPublicationYear "2022" @default.
- W4220974364 type Work @default.
- W4220974364 citedByCount "13" @default.
- W4220974364 countsByYear W42209743642020 @default.
- W4220974364 countsByYear W42209743642021 @default.
- W4220974364 countsByYear W42209743642022 @default.
- W4220974364 countsByYear W42209743642023 @default.
- W4220974364 crossrefType "journal-article" @default.
- W4220974364 hasAuthorship W4220974364A5014179374 @default.
- W4220974364 hasAuthorship W4220974364A5055737890 @default.
- W4220974364 hasAuthorship W4220974364A5082980105 @default.
- W4220974364 hasBestOaLocation W42209743641 @default.
- W4220974364 hasConcept C10138342 @default.
- W4220974364 hasConcept C111472728 @default.
- W4220974364 hasConcept C121955636 @default.
- W4220974364 hasConcept C138885662 @default.
- W4220974364 hasConcept C144133560 @default.
- W4220974364 hasConcept C165696696 @default.
- W4220974364 hasConcept C17744445 @default.
- W4220974364 hasConcept C185592680 @default.
- W4220974364 hasConcept C198531522 @default.
- W4220974364 hasConcept C199521495 @default.
- W4220974364 hasConcept C199539241 @default.
- W4220974364 hasConcept C203133693 @default.
- W4220974364 hasConcept C2778136018 @default.
- W4220974364 hasConcept C2780005421 @default.
- W4220974364 hasConcept C2780233690 @default.
- W4220974364 hasConcept C38652104 @default.
- W4220974364 hasConcept C41008148 @default.
- W4220974364 hasConcept C43617362 @default.
- W4220974364 hasConcept C75949130 @default.
- W4220974364 hasConcept C77088390 @default.
- W4220974364 hasConceptScore W4220974364C10138342 @default.
- W4220974364 hasConceptScore W4220974364C111472728 @default.
- W4220974364 hasConceptScore W4220974364C121955636 @default.
- W4220974364 hasConceptScore W4220974364C138885662 @default.
- W4220974364 hasConceptScore W4220974364C144133560 @default.
- W4220974364 hasConceptScore W4220974364C165696696 @default.