Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220974603> ?p ?o ?g. }
- W4220974603 endingPage "3420" @default.
- W4220974603 startingPage "3420" @default.
- W4220974603 abstract "Designing materials for targeted materials properties is the key to tackle the demands for personalized consumer products. The deficiency in the existing linear and nonlinear correlation methods attributed to simplifying assumptions and idealizations, nondeterministic simulations, and limited experimental data due to heavy computational time and cost, necessitates a design method that provides sufficient confidence to designers in decision making. To address this requirement, we propose, in this paper, an inverse goal-oriented materials design method supported by the design space exploration framework (DSEF). Keeping in view the accuracy and precision in the prediction confidence of machine learning-based methods, we developed an Artificial Neural Network based prediction model that supports DSEF. The proposed method for materials design can help designers to (1) explore PSPP spaces starting from end property requirements, (2) adjust the errors being propagated in the PSPP chain as well as in the predictions made by the model, and (3) timely adjust model parameters of the prediction model for accurate predictions. The efficacy of the method is illustrated for the hot stamping process to produce structural components from ultrahigh-strength steels (UHSS). The proposed method and prediction model are generic and applicable to any sequential manufacturing process to realize an end product." @default.
- W4220974603 created "2022-04-03" @default.
- W4220974603 creator A5008826433 @default.
- W4220974603 creator A5048411184 @default.
- W4220974603 creator A5058735910 @default.
- W4220974603 date "2022-03-28" @default.
- W4220974603 modified "2023-09-26" @default.
- W4220974603 title "ANN-Based Inverse Goal-Oriented Design Method for Targeted Final Properties of Materials" @default.
- W4220974603 cites W1908121391 @default.
- W4220974603 cites W1963999076 @default.
- W4220974603 cites W1966254617 @default.
- W4220974603 cites W1966728959 @default.
- W4220974603 cites W1967646346 @default.
- W4220974603 cites W1984559752 @default.
- W4220974603 cites W1985365012 @default.
- W4220974603 cites W1992429085 @default.
- W4220974603 cites W1996994342 @default.
- W4220974603 cites W1997269034 @default.
- W4220974603 cites W1997841687 @default.
- W4220974603 cites W2000785416 @default.
- W4220974603 cites W2003711587 @default.
- W4220974603 cites W2005295921 @default.
- W4220974603 cites W2018117923 @default.
- W4220974603 cites W2019561942 @default.
- W4220974603 cites W2023154887 @default.
- W4220974603 cites W2031639432 @default.
- W4220974603 cites W2036881297 @default.
- W4220974603 cites W2043089213 @default.
- W4220974603 cites W2055068026 @default.
- W4220974603 cites W2055393923 @default.
- W4220974603 cites W2058360049 @default.
- W4220974603 cites W2060600711 @default.
- W4220974603 cites W2065325724 @default.
- W4220974603 cites W2069447053 @default.
- W4220974603 cites W2075894612 @default.
- W4220974603 cites W2076118331 @default.
- W4220974603 cites W2076184585 @default.
- W4220974603 cites W2078236179 @default.
- W4220974603 cites W2082933163 @default.
- W4220974603 cites W2086404107 @default.
- W4220974603 cites W2105192472 @default.
- W4220974603 cites W2120668716 @default.
- W4220974603 cites W2135293965 @default.
- W4220974603 cites W2142366846 @default.
- W4220974603 cites W2145992718 @default.
- W4220974603 cites W2155889930 @default.
- W4220974603 cites W2199157827 @default.
- W4220974603 cites W2343462019 @default.
- W4220974603 cites W2354373258 @default.
- W4220974603 cites W2395404705 @default.
- W4220974603 cites W2438558429 @default.
- W4220974603 cites W2478294658 @default.
- W4220974603 cites W2561858808 @default.
- W4220974603 cites W2564288376 @default.
- W4220974603 cites W2626833042 @default.
- W4220974603 cites W2746371905 @default.
- W4220974603 cites W2793115453 @default.
- W4220974603 cites W2795194316 @default.
- W4220974603 cites W2969222270 @default.
- W4220974603 cites W3015706362 @default.
- W4220974603 cites W3098905070 @default.
- W4220974603 cites W3104887532 @default.
- W4220974603 cites W3129400535 @default.
- W4220974603 doi "https://doi.org/10.3390/app12073420" @default.
- W4220974603 hasPublicationYear "2022" @default.
- W4220974603 type Work @default.
- W4220974603 citedByCount "1" @default.
- W4220974603 countsByYear W42209746032022 @default.
- W4220974603 crossrefType "journal-article" @default.
- W4220974603 hasAuthorship W4220974603A5008826433 @default.
- W4220974603 hasAuthorship W4220974603A5048411184 @default.
- W4220974603 hasAuthorship W4220974603A5058735910 @default.
- W4220974603 hasBestOaLocation W42209746031 @default.
- W4220974603 hasConcept C111919701 @default.
- W4220974603 hasConcept C11413529 @default.
- W4220974603 hasConcept C119857082 @default.
- W4220974603 hasConcept C120823896 @default.
- W4220974603 hasConcept C121332964 @default.
- W4220974603 hasConcept C127413603 @default.
- W4220974603 hasConcept C13736549 @default.
- W4220974603 hasConcept C158622935 @default.
- W4220974603 hasConcept C176181172 @default.
- W4220974603 hasConcept C207467116 @default.
- W4220974603 hasConcept C2524010 @default.
- W4220974603 hasConcept C26517878 @default.
- W4220974603 hasConcept C33923547 @default.
- W4220974603 hasConcept C38652104 @default.
- W4220974603 hasConcept C41008148 @default.
- W4220974603 hasConcept C50644808 @default.
- W4220974603 hasConcept C62520636 @default.
- W4220974603 hasConcept C90673727 @default.
- W4220974603 hasConcept C98045186 @default.
- W4220974603 hasConceptScore W4220974603C111919701 @default.
- W4220974603 hasConceptScore W4220974603C11413529 @default.
- W4220974603 hasConceptScore W4220974603C119857082 @default.
- W4220974603 hasConceptScore W4220974603C120823896 @default.
- W4220974603 hasConceptScore W4220974603C121332964 @default.
- W4220974603 hasConceptScore W4220974603C127413603 @default.