Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220974787> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4220974787 endingPage "1423" @default.
- W4220974787 startingPage "1423" @default.
- W4220974787 abstract "Patent analysis is to analyze patent data to understand target technology. Patent data contains various detailed information about the developed technology. Therefore, many studies concerning patent analysis have been carried out in the technology analysis fields. Most traditional methods for technology analysis were based on qualitative approaches such as Delphi survey. However, the patent analysis methods based on statistics and machine learning have been introduced recently. In this paper, we proposed a statistical method for quantitative patent analysis. Moreover, we selected drone technology as the target technology for patent analysis. To understand drone technology, we analyzed the patents on drone technology. We searched the patent documents related to drone technology and transformed them to structured data using text mining techniques. First, we visualized the patent keywords to identify the technological structure of a drone. Next, using Bayesian additive regression trees, we analyzed the structured patent data to construct technology scenarios for drones. To illustrate the performance and validity of our proposed research, we presented the experimental results of patent analysis using patent documents related to drone technology." @default.
- W4220974787 created "2022-04-03" @default.
- W4220974787 creator A5016293435 @default.
- W4220974787 creator A5063202314 @default.
- W4220974787 date "2022-01-28" @default.
- W4220974787 modified "2023-09-25" @default.
- W4220974787 title "Patent Analysis Using Bayesian Data Analysis and Network Modeling" @default.
- W4220974787 cites W2017909259 @default.
- W4220974787 cites W2069026846 @default.
- W4220974787 cites W2161793142 @default.
- W4220974787 cites W2327770667 @default.
- W4220974787 cites W2337764243 @default.
- W4220974787 cites W2587990869 @default.
- W4220974787 cites W2891710486 @default.
- W4220974787 cites W2918636049 @default.
- W4220974787 cites W2921157437 @default.
- W4220974787 cites W2999665790 @default.
- W4220974787 cites W3023899668 @default.
- W4220974787 cites W3030830012 @default.
- W4220974787 cites W3099006712 @default.
- W4220974787 cites W3109146160 @default.
- W4220974787 cites W3109726404 @default.
- W4220974787 cites W3111905586 @default.
- W4220974787 cites W3119351177 @default.
- W4220974787 cites W3161830517 @default.
- W4220974787 doi "https://doi.org/10.3390/app12031423" @default.
- W4220974787 hasPublicationYear "2022" @default.
- W4220974787 type Work @default.
- W4220974787 citedByCount "5" @default.
- W4220974787 countsByYear W42209747872022 @default.
- W4220974787 countsByYear W42209747872023 @default.
- W4220974787 crossrefType "journal-article" @default.
- W4220974787 hasAuthorship W4220974787A5016293435 @default.
- W4220974787 hasAuthorship W4220974787A5063202314 @default.
- W4220974787 hasBestOaLocation W42209747871 @default.
- W4220974787 hasConcept C111919701 @default.
- W4220974787 hasConcept C114419676 @default.
- W4220974787 hasConcept C119857082 @default.
- W4220974787 hasConcept C124101348 @default.
- W4220974787 hasConcept C154945302 @default.
- W4220974787 hasConcept C199360897 @default.
- W4220974787 hasConcept C2522767166 @default.
- W4220974787 hasConcept C2778029865 @default.
- W4220974787 hasConcept C2779495148 @default.
- W4220974787 hasConcept C2780801425 @default.
- W4220974787 hasConcept C41008148 @default.
- W4220974787 hasConcept C54355233 @default.
- W4220974787 hasConcept C59519942 @default.
- W4220974787 hasConcept C86803240 @default.
- W4220974787 hasConceptScore W4220974787C111919701 @default.
- W4220974787 hasConceptScore W4220974787C114419676 @default.
- W4220974787 hasConceptScore W4220974787C119857082 @default.
- W4220974787 hasConceptScore W4220974787C124101348 @default.
- W4220974787 hasConceptScore W4220974787C154945302 @default.
- W4220974787 hasConceptScore W4220974787C199360897 @default.
- W4220974787 hasConceptScore W4220974787C2522767166 @default.
- W4220974787 hasConceptScore W4220974787C2778029865 @default.
- W4220974787 hasConceptScore W4220974787C2779495148 @default.
- W4220974787 hasConceptScore W4220974787C2780801425 @default.
- W4220974787 hasConceptScore W4220974787C41008148 @default.
- W4220974787 hasConceptScore W4220974787C54355233 @default.
- W4220974787 hasConceptScore W4220974787C59519942 @default.
- W4220974787 hasConceptScore W4220974787C86803240 @default.
- W4220974787 hasFunder F4320322120 @default.
- W4220974787 hasIssue "3" @default.
- W4220974787 hasLocation W42209747871 @default.
- W4220974787 hasLocation W42209747872 @default.
- W4220974787 hasOpenAccess W4220974787 @default.
- W4220974787 hasPrimaryLocation W42209747871 @default.
- W4220974787 hasRelatedWork W1986956462 @default.
- W4220974787 hasRelatedWork W2187261910 @default.
- W4220974787 hasRelatedWork W2363144529 @default.
- W4220974787 hasRelatedWork W2377030126 @default.
- W4220974787 hasRelatedWork W2544040176 @default.
- W4220974787 hasRelatedWork W2603750736 @default.
- W4220974787 hasRelatedWork W2878705265 @default.
- W4220974787 hasRelatedWork W3022926453 @default.
- W4220974787 hasRelatedWork W3198238051 @default.
- W4220974787 hasRelatedWork W4321497560 @default.
- W4220974787 hasVolume "12" @default.
- W4220974787 isParatext "false" @default.
- W4220974787 isRetracted "false" @default.
- W4220974787 workType "article" @default.