Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220974791> ?p ?o ?g. }
- W4220974791 endingPage "13" @default.
- W4220974791 startingPage "1" @default.
- W4220974791 abstract "This paper takes the airport terminal area as the main research content and combines genetic algorithm with airport terminal area analysis theory to analyze and study the traffic scheduling in the airport terminal area. Based on the study of traditional traffic scheduling techniques and key techniques of genetic algorithms, this paper participates in the actual project of genetic algorithm-based traffic scheduling, analyzes the requirements of the project, focuses on the design and implementation of the traffic scheduling algorithm module in the genetic algorithm-based traffic scheduling system, and conducts further research on the pathfinding by constraints submodule. In this paper, the flight approach and departure sequencing problem and runway allocation problem are the main research objects. The dynamic optimal scheduling model of flight approach and departure is established by considering the interests and demands of airlines and airports, and a new scheduling algorithm is proposed. In this paper, a brief introduction to the airport terminal area is given, and the feasibility of the approach/departure optimal scheduling is introduced from the perspective of airlines with a long-range parallel two-runway airport as the research background. Secondly, through the analysis of the flight approach and departure process and the study of the approach and departure cooperative optimization strategy, a single-runway flight approach and departure traffic scheduling model under the joint sequencing strategy is established with the optimization objective of minimizing the total flight delay time, and the model is solved by using the sliding time window algorithm. Then, based on the single-runway scheduling model, a multirunway multiobjective flight optimal scheduling model is established with the objectives of minimizing total delay time, increasing runway throughput per unit time and fairness of flight delay time allocation, and a dynamic algorithm (STW-GA) combining sliding time window algorithm and dual-structured chromosome genetic algorithm is proposed to solve the model." @default.
- W4220974791 created "2022-04-03" @default.
- W4220974791 creator A5007288281 @default.
- W4220974791 creator A5011383185 @default.
- W4220974791 creator A5012031316 @default.
- W4220974791 creator A5026982782 @default.
- W4220974791 creator A5048197405 @default.
- W4220974791 creator A5060009525 @default.
- W4220974791 creator A5068498936 @default.
- W4220974791 creator A5072434039 @default.
- W4220974791 creator A5085057606 @default.
- W4220974791 creator A5089575665 @default.
- W4220974791 date "2022-03-29" @default.
- W4220974791 modified "2023-09-25" @default.
- W4220974791 title "An Improved Genetic Algorithm-Based Traffic Scheduling Model for Airport Terminal Areas" @default.
- W4220974791 cites W2592100394 @default.
- W4220974791 cites W2617172242 @default.
- W4220974791 cites W2731158549 @default.
- W4220974791 cites W2781666301 @default.
- W4220974791 cites W2782347140 @default.
- W4220974791 cites W2790144727 @default.
- W4220974791 cites W2808747139 @default.
- W4220974791 cites W2811496463 @default.
- W4220974791 cites W2847344707 @default.
- W4220974791 cites W2894419220 @default.
- W4220974791 cites W2904373493 @default.
- W4220974791 cites W2980932827 @default.
- W4220974791 cites W2983409966 @default.
- W4220974791 cites W2991135269 @default.
- W4220974791 cites W3006735619 @default.
- W4220974791 cites W3025029468 @default.
- W4220974791 cites W3049396982 @default.
- W4220974791 cites W3081085888 @default.
- W4220974791 cites W3083928685 @default.
- W4220974791 cites W3091038948 @default.
- W4220974791 doi "https://doi.org/10.1155/2022/7926335" @default.
- W4220974791 hasPublicationYear "2022" @default.
- W4220974791 type Work @default.
- W4220974791 citedByCount "0" @default.
- W4220974791 crossrefType "journal-article" @default.
- W4220974791 hasAuthorship W4220974791A5007288281 @default.
- W4220974791 hasAuthorship W4220974791A5011383185 @default.
- W4220974791 hasAuthorship W4220974791A5012031316 @default.
- W4220974791 hasAuthorship W4220974791A5026982782 @default.
- W4220974791 hasAuthorship W4220974791A5048197405 @default.
- W4220974791 hasAuthorship W4220974791A5060009525 @default.
- W4220974791 hasAuthorship W4220974791A5068498936 @default.
- W4220974791 hasAuthorship W4220974791A5072434039 @default.
- W4220974791 hasAuthorship W4220974791A5085057606 @default.
- W4220974791 hasAuthorship W4220974791A5089575665 @default.
- W4220974791 hasBestOaLocation W42209747911 @default.
- W4220974791 hasConcept C107568181 @default.
- W4220974791 hasConcept C119857082 @default.
- W4220974791 hasConcept C127413603 @default.
- W4220974791 hasConcept C146978453 @default.
- W4220974791 hasConcept C166957645 @default.
- W4220974791 hasConcept C166961238 @default.
- W4220974791 hasConcept C206729178 @default.
- W4220974791 hasConcept C21547014 @default.
- W4220974791 hasConcept C31258907 @default.
- W4220974791 hasConcept C41008148 @default.
- W4220974791 hasConcept C42475967 @default.
- W4220974791 hasConcept C5119721 @default.
- W4220974791 hasConcept C79403827 @default.
- W4220974791 hasConcept C81155309 @default.
- W4220974791 hasConcept C8880873 @default.
- W4220974791 hasConcept C95457728 @default.
- W4220974791 hasConceptScore W4220974791C107568181 @default.
- W4220974791 hasConceptScore W4220974791C119857082 @default.
- W4220974791 hasConceptScore W4220974791C127413603 @default.
- W4220974791 hasConceptScore W4220974791C146978453 @default.
- W4220974791 hasConceptScore W4220974791C166957645 @default.
- W4220974791 hasConceptScore W4220974791C166961238 @default.
- W4220974791 hasConceptScore W4220974791C206729178 @default.
- W4220974791 hasConceptScore W4220974791C21547014 @default.
- W4220974791 hasConceptScore W4220974791C31258907 @default.
- W4220974791 hasConceptScore W4220974791C41008148 @default.
- W4220974791 hasConceptScore W4220974791C42475967 @default.
- W4220974791 hasConceptScore W4220974791C5119721 @default.
- W4220974791 hasConceptScore W4220974791C79403827 @default.
- W4220974791 hasConceptScore W4220974791C81155309 @default.
- W4220974791 hasConceptScore W4220974791C8880873 @default.
- W4220974791 hasConceptScore W4220974791C95457728 @default.
- W4220974791 hasLocation W42209747911 @default.
- W4220974791 hasOpenAccess W4220974791 @default.
- W4220974791 hasPrimaryLocation W42209747911 @default.
- W4220974791 hasRelatedWork W1964758360 @default.
- W4220974791 hasRelatedWork W1969408306 @default.
- W4220974791 hasRelatedWork W2074789955 @default.
- W4220974791 hasRelatedWork W2364877486 @default.
- W4220974791 hasRelatedWork W2626492532 @default.
- W4220974791 hasRelatedWork W2752016078 @default.
- W4220974791 hasRelatedWork W4238200352 @default.
- W4220974791 hasRelatedWork W2125787621 @default.
- W4220974791 hasRelatedWork W2145776312 @default.
- W4220974791 hasRelatedWork W2184929107 @default.
- W4220974791 hasVolume "2022" @default.
- W4220974791 isParatext "false" @default.