Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220978079> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4220978079 endingPage "3092" @default.
- W4220978079 startingPage "3092" @default.
- W4220978079 abstract "<p><span>With the development of today's society, demand for applications using digital cameras jumps over year by year. However, analyzing large amounts of video data causes one of the most challenging issues. In addition to storing the data captured by the camera, intelligent systems are required to quickly analyze the data to correct important situations. In this paper, we use deep learning techniques to build automatic models that describe movements on video. To solve the problem, we use three deep learning models: sequence-to-sequence model based on recurrent neural network, sequence-to-sequence model with attention and transformer model. We evaluate the effectiveness of the approaches based on the results of three models. To train these models, we use microsoft research video description corpus (MSVD) dataset including 1970 videos and 85,550 captions translated into Vietnamese. In order to ensure the description of the content in Vietnamese, we also combine it with the natural language processing (NLP) model for Vietnamese.</span></p>" @default.
- W4220978079 created "2022-04-03" @default.
- W4220978079 creator A5043049579 @default.
- W4220978079 creator A5054864081 @default.
- W4220978079 creator A5070221843 @default.
- W4220978079 creator A5071308048 @default.
- W4220978079 date "2022-06-01" @default.
- W4220978079 modified "2023-09-27" @default.
- W4220978079 title "Video captioning in Vietnamese using deep learning" @default.
- W4220978079 doi "https://doi.org/10.11591/ijece.v12i3.pp3092-3103" @default.
- W4220978079 hasPublicationYear "2022" @default.
- W4220978079 type Work @default.
- W4220978079 citedByCount "0" @default.
- W4220978079 crossrefType "journal-article" @default.
- W4220978079 hasAuthorship W4220978079A5043049579 @default.
- W4220978079 hasAuthorship W4220978079A5054864081 @default.
- W4220978079 hasAuthorship W4220978079A5070221843 @default.
- W4220978079 hasAuthorship W4220978079A5071308048 @default.
- W4220978079 hasBestOaLocation W42209780791 @default.
- W4220978079 hasConcept C103621254 @default.
- W4220978079 hasConcept C108583219 @default.
- W4220978079 hasConcept C115961682 @default.
- W4220978079 hasConcept C119857082 @default.
- W4220978079 hasConcept C121332964 @default.
- W4220978079 hasConcept C138885662 @default.
- W4220978079 hasConcept C147168706 @default.
- W4220978079 hasConcept C154945302 @default.
- W4220978079 hasConcept C157657479 @default.
- W4220978079 hasConcept C165801399 @default.
- W4220978079 hasConcept C204321447 @default.
- W4220978079 hasConcept C2778112365 @default.
- W4220978079 hasConcept C28490314 @default.
- W4220978079 hasConcept C41008148 @default.
- W4220978079 hasConcept C41895202 @default.
- W4220978079 hasConcept C50644808 @default.
- W4220978079 hasConcept C54355233 @default.
- W4220978079 hasConcept C62520636 @default.
- W4220978079 hasConcept C66322947 @default.
- W4220978079 hasConcept C86803240 @default.
- W4220978079 hasConceptScore W4220978079C103621254 @default.
- W4220978079 hasConceptScore W4220978079C108583219 @default.
- W4220978079 hasConceptScore W4220978079C115961682 @default.
- W4220978079 hasConceptScore W4220978079C119857082 @default.
- W4220978079 hasConceptScore W4220978079C121332964 @default.
- W4220978079 hasConceptScore W4220978079C138885662 @default.
- W4220978079 hasConceptScore W4220978079C147168706 @default.
- W4220978079 hasConceptScore W4220978079C154945302 @default.
- W4220978079 hasConceptScore W4220978079C157657479 @default.
- W4220978079 hasConceptScore W4220978079C165801399 @default.
- W4220978079 hasConceptScore W4220978079C204321447 @default.
- W4220978079 hasConceptScore W4220978079C2778112365 @default.
- W4220978079 hasConceptScore W4220978079C28490314 @default.
- W4220978079 hasConceptScore W4220978079C41008148 @default.
- W4220978079 hasConceptScore W4220978079C41895202 @default.
- W4220978079 hasConceptScore W4220978079C50644808 @default.
- W4220978079 hasConceptScore W4220978079C54355233 @default.
- W4220978079 hasConceptScore W4220978079C62520636 @default.
- W4220978079 hasConceptScore W4220978079C66322947 @default.
- W4220978079 hasConceptScore W4220978079C86803240 @default.
- W4220978079 hasIssue "3" @default.
- W4220978079 hasLocation W42209780791 @default.
- W4220978079 hasLocation W42209780792 @default.
- W4220978079 hasOpenAccess W4220978079 @default.
- W4220978079 hasPrimaryLocation W42209780791 @default.
- W4220978079 hasRelatedWork W2795261237 @default.
- W4220978079 hasRelatedWork W3014300295 @default.
- W4220978079 hasRelatedWork W3164822677 @default.
- W4220978079 hasRelatedWork W4223943233 @default.
- W4220978079 hasRelatedWork W4225161397 @default.
- W4220978079 hasRelatedWork W4312200629 @default.
- W4220978079 hasRelatedWork W4360585206 @default.
- W4220978079 hasRelatedWork W4364306694 @default.
- W4220978079 hasRelatedWork W4380075502 @default.
- W4220978079 hasRelatedWork W4380086463 @default.
- W4220978079 hasVolume "12" @default.
- W4220978079 isParatext "false" @default.
- W4220978079 isRetracted "false" @default.
- W4220978079 workType "article" @default.