Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220980204> ?p ?o ?g. }
- W4220980204 endingPage "2683" @default.
- W4220980204 startingPage "2683" @default.
- W4220980204 abstract "Automatic Traffic Sign Detection and Recognition (TSDR) provides drivers with critical information on traffic signs, and it constitutes an enabling condition for autonomous driving. Misclassifying even a single sign may constitute a severe hazard, which negatively impacts the environment, infrastructures, and human lives. Therefore, a reliable TSDR mechanism is essential to attain a safe circulation of road vehicles. Traffic Sign Recognition (TSR) techniques that use Machine Learning (ML) algorithms have been proposed, but no agreement on a preferred ML algorithm nor perfect classification capabilities were always achieved by any existing solutions. Consequently, our study employs ML-based classifiers to build a TSR system that analyzes a sliding window of frames sampled by sensors on a vehicle. Such TSR processes the most recent frame and past frames sampled by sensors through (i) Long Short-Term Memory (LSTM) networks and (ii) Stacking Meta-Learners, which allow for efficiently combining base-learning classification episodes into a unified and improved meta-level classification. Experimental results by using publicly available datasets show that Stacking Meta-Learners dramatically reduce misclassifications of signs and achieved perfect classification on all three considered datasets. This shows the potential of our novel approach based on sliding windows to be used as an efficient solution for TSR." @default.
- W4220980204 created "2022-04-03" @default.
- W4220980204 creator A5005797686 @default.
- W4220980204 creator A5016669256 @default.
- W4220980204 creator A5027443752 @default.
- W4220980204 creator A5081356359 @default.
- W4220980204 date "2022-03-31" @default.
- W4220980204 modified "2023-10-06" @default.
- W4220980204 title "Towards Enhancing Traffic Sign Recognition through Sliding Windows" @default.
- W4220980204 cites W1600918697 @default.
- W4220980204 cites W1967665915 @default.
- W4220980204 cites W1975509163 @default.
- W4220980204 cites W1978736542 @default.
- W4220980204 cites W2001619934 @default.
- W4220980204 cites W2064675550 @default.
- W4220980204 cites W2067713319 @default.
- W4220980204 cites W2145071552 @default.
- W4220980204 cites W2145680191 @default.
- W4220980204 cites W2163352848 @default.
- W4220980204 cites W2170505850 @default.
- W4220980204 cites W2172000360 @default.
- W4220980204 cites W2295198236 @default.
- W4220980204 cites W2309693750 @default.
- W4220980204 cites W2435703814 @default.
- W4220980204 cites W2472350142 @default.
- W4220980204 cites W2517190429 @default.
- W4220980204 cites W2538864697 @default.
- W4220980204 cites W2555714304 @default.
- W4220980204 cites W2605579118 @default.
- W4220980204 cites W2726204845 @default.
- W4220980204 cites W2808910047 @default.
- W4220980204 cites W28412257 @default.
- W4220980204 cites W2887801798 @default.
- W4220980204 cites W2890192763 @default.
- W4220980204 cites W2908882634 @default.
- W4220980204 cites W2911964244 @default.
- W4220980204 cites W2934927121 @default.
- W4220980204 cites W2940955785 @default.
- W4220980204 cites W2955797710 @default.
- W4220980204 cites W2955954653 @default.
- W4220980204 cites W2963311488 @default.
- W4220980204 cites W2966731281 @default.
- W4220980204 cites W2973271139 @default.
- W4220980204 cites W2992060548 @default.
- W4220980204 cites W3022146783 @default.
- W4220980204 cites W3047433257 @default.
- W4220980204 cites W3070733705 @default.
- W4220980204 cites W3088152618 @default.
- W4220980204 cites W3088757170 @default.
- W4220980204 cites W3095245623 @default.
- W4220980204 cites W3158501847 @default.
- W4220980204 cites W4206510012 @default.
- W4220980204 cites W4212883601 @default.
- W4220980204 cites W4225701826 @default.
- W4220980204 doi "https://doi.org/10.3390/s22072683" @default.
- W4220980204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35408298" @default.
- W4220980204 hasPublicationYear "2022" @default.
- W4220980204 type Work @default.
- W4220980204 citedByCount "6" @default.
- W4220980204 countsByYear W42209802042022 @default.
- W4220980204 countsByYear W42209802042023 @default.
- W4220980204 crossrefType "journal-article" @default.
- W4220980204 hasAuthorship W4220980204A5005797686 @default.
- W4220980204 hasAuthorship W4220980204A5016669256 @default.
- W4220980204 hasAuthorship W4220980204A5027443752 @default.
- W4220980204 hasAuthorship W4220980204A5081356359 @default.
- W4220980204 hasBestOaLocation W42209802041 @default.
- W4220980204 hasConcept C102392041 @default.
- W4220980204 hasConcept C111919701 @default.
- W4220980204 hasConcept C119857082 @default.
- W4220980204 hasConcept C121332964 @default.
- W4220980204 hasConcept C124101348 @default.
- W4220980204 hasConcept C126042441 @default.
- W4220980204 hasConcept C134306372 @default.
- W4220980204 hasConcept C139676723 @default.
- W4220980204 hasConcept C153180895 @default.
- W4220980204 hasConcept C154945302 @default.
- W4220980204 hasConcept C2778751112 @default.
- W4220980204 hasConcept C2983860417 @default.
- W4220980204 hasConcept C31258907 @default.
- W4220980204 hasConcept C33347731 @default.
- W4220980204 hasConcept C33923547 @default.
- W4220980204 hasConcept C41008148 @default.
- W4220980204 hasConcept C46141821 @default.
- W4220980204 hasConcept C6528762 @default.
- W4220980204 hasConceptScore W4220980204C102392041 @default.
- W4220980204 hasConceptScore W4220980204C111919701 @default.
- W4220980204 hasConceptScore W4220980204C119857082 @default.
- W4220980204 hasConceptScore W4220980204C121332964 @default.
- W4220980204 hasConceptScore W4220980204C124101348 @default.
- W4220980204 hasConceptScore W4220980204C126042441 @default.
- W4220980204 hasConceptScore W4220980204C134306372 @default.
- W4220980204 hasConceptScore W4220980204C139676723 @default.
- W4220980204 hasConceptScore W4220980204C153180895 @default.
- W4220980204 hasConceptScore W4220980204C154945302 @default.
- W4220980204 hasConceptScore W4220980204C2778751112 @default.
- W4220980204 hasConceptScore W4220980204C2983860417 @default.
- W4220980204 hasConceptScore W4220980204C31258907 @default.