Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220982012> ?p ?o ?g. }
- W4220982012 endingPage "111969" @default.
- W4220982012 startingPage "111969" @default.
- W4220982012 abstract "The fundamental purpose of this work is to analyze Δ-Choquet integrals on time scales which is a special case of Choquet integral on abstract fuzzy (non-additive) measure space. We first present a Δ-Choquet integral with respect to non-additive Δ-measure or more precisely a distorted Lebesgue Δ-measure on an arbitrary time scale. Consequently, we come up with a more general integral than the standard Choquet integral of continuous and discrete calculus. Its use can be seen as convenient in economics, decision making, artificial intelligence, and many more. Particularly, in economics, most of the models are dynamic models (continuous and/or discrete), and those can be easily studied on time scales. Further, some basic essential results and properties of the general integral are studied. For instance, we discuss translation, homogeneity, linearity, and many more with respect to the functions and measures of the integral. Then, after that, we present some theorems for computing the integral. The findings agree to unify and extend a number of well-known results reported in the literature to a broader calculus, including continuous, discrete, and quantum calculus, among others. We also evaluate the integral on an invariant under the translation of time scales. Besides, a short note on Δ-Choquet integral with the Caputo-Fabrizio fractional derivative on the time scales is given. The significance of the outcomes is also further enhanced by a variety of interesting examples. Moreover, eventually, we stop findings after discussing an another way to calculate the Δ-Choquet integral on the time scales. To do this, we define Stieltjes distorted types-I and II Lebesgue Δ-measures on time scales which are accomplished with the help of distorted Lebesgue Δ-measure." @default.
- W4220982012 created "2022-04-03" @default.
- W4220982012 creator A5055342430 @default.
- W4220982012 creator A5076985479 @default.
- W4220982012 date "2022-04-01" @default.
- W4220982012 modified "2023-10-14" @default.
- W4220982012 title "<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si1.svg><mml:mstyle mathvariant=normal><mml:mi>Δ</mml:mi></mml:mstyle></mml:math>-Choquet integral on time scales with applications" @default.
- W4220982012 cites W1522419168 @default.
- W4220982012 cites W1904859964 @default.
- W4220982012 cites W1970913020 @default.
- W4220982012 cites W1976039496 @default.
- W4220982012 cites W1976791724 @default.
- W4220982012 cites W1989377089 @default.
- W4220982012 cites W2028418738 @default.
- W4220982012 cites W2036234778 @default.
- W4220982012 cites W2038642934 @default.
- W4220982012 cites W2040764085 @default.
- W4220982012 cites W2044366386 @default.
- W4220982012 cites W2051618432 @default.
- W4220982012 cites W2053561951 @default.
- W4220982012 cites W2060907774 @default.
- W4220982012 cites W2062759921 @default.
- W4220982012 cites W2066397800 @default.
- W4220982012 cites W2074949586 @default.
- W4220982012 cites W2085649864 @default.
- W4220982012 cites W2087171145 @default.
- W4220982012 cites W2105640560 @default.
- W4220982012 cites W2117366717 @default.
- W4220982012 cites W2133265661 @default.
- W4220982012 cites W2137546828 @default.
- W4220982012 cites W2150700223 @default.
- W4220982012 cites W2156091535 @default.
- W4220982012 cites W2280947434 @default.
- W4220982012 cites W2327654738 @default.
- W4220982012 cites W2537361192 @default.
- W4220982012 cites W2726491432 @default.
- W4220982012 cites W2742500246 @default.
- W4220982012 cites W2779423079 @default.
- W4220982012 cites W2790273928 @default.
- W4220982012 cites W2795239643 @default.
- W4220982012 cites W2900734811 @default.
- W4220982012 cites W2942393571 @default.
- W4220982012 cites W2947647030 @default.
- W4220982012 cites W2974347212 @default.
- W4220982012 cites W3031242449 @default.
- W4220982012 cites W3033223998 @default.
- W4220982012 cites W3037264642 @default.
- W4220982012 cites W3043202132 @default.
- W4220982012 cites W3085217072 @default.
- W4220982012 cites W3087366868 @default.
- W4220982012 cites W3092420013 @default.
- W4220982012 cites W3093546745 @default.
- W4220982012 cites W3105079207 @default.
- W4220982012 cites W3121808573 @default.
- W4220982012 cites W3195841413 @default.
- W4220982012 cites W4256195314 @default.
- W4220982012 cites W878432258 @default.
- W4220982012 doi "https://doi.org/10.1016/j.chaos.2022.111969" @default.
- W4220982012 hasPublicationYear "2022" @default.
- W4220982012 type Work @default.
- W4220982012 citedByCount "1" @default.
- W4220982012 countsByYear W42209820122022 @default.
- W4220982012 crossrefType "journal-article" @default.
- W4220982012 hasAuthorship W4220982012A5055342430 @default.
- W4220982012 hasAuthorship W4220982012A5076985479 @default.
- W4220982012 hasBestOaLocation W42209820121 @default.
- W4220982012 hasConcept C100516043 @default.
- W4220982012 hasConcept C112680207 @default.
- W4220982012 hasConcept C112799922 @default.
- W4220982012 hasConcept C134306372 @default.
- W4220982012 hasConcept C134810832 @default.
- W4220982012 hasConcept C136119220 @default.
- W4220982012 hasConcept C14158598 @default.
- W4220982012 hasConcept C154945302 @default.
- W4220982012 hasConcept C157972887 @default.
- W4220982012 hasConcept C176684429 @default.
- W4220982012 hasConcept C1883856 @default.
- W4220982012 hasConcept C191832335 @default.
- W4220982012 hasConcept C199343813 @default.
- W4220982012 hasConcept C200661725 @default.
- W4220982012 hasConcept C202444582 @default.
- W4220982012 hasConcept C2524010 @default.
- W4220982012 hasConcept C27016315 @default.
- W4220982012 hasConcept C2777686260 @default.
- W4220982012 hasConcept C2780009758 @default.
- W4220982012 hasConcept C33923547 @default.
- W4220982012 hasConcept C41008148 @default.
- W4220982012 hasConcept C42011625 @default.
- W4220982012 hasConcept C58166 @default.
- W4220982012 hasConcept C71924100 @default.
- W4220982012 hasConcept C77088390 @default.
- W4220982012 hasConceptScore W4220982012C100516043 @default.
- W4220982012 hasConceptScore W4220982012C112680207 @default.
- W4220982012 hasConceptScore W4220982012C112799922 @default.
- W4220982012 hasConceptScore W4220982012C134306372 @default.
- W4220982012 hasConceptScore W4220982012C134810832 @default.
- W4220982012 hasConceptScore W4220982012C136119220 @default.
- W4220982012 hasConceptScore W4220982012C14158598 @default.