Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220984888> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4220984888 endingPage "107815" @default.
- W4220984888 startingPage "107815" @default.
- W4220984888 abstract "Unlike land, the oceans, although covering more than 70% of the planet, are largely unexplored. Global fisheries resources are central to the sustainability and quality of life on earth but are under threat from climate change, ocean acidification and over consumption. One way to analyze these marine resource is through remote underwater surveying. However, the sheer volume of recorded data often make classification and analyses difficult, time consuming and resource intensive. Recent developments in machine learning (ML) have shown promising application in extracting high level context with near human performance on image classification tasks. The application of ML in remote underwater surveying can drastically reduce the processing time of these datasets. In order to train these deep neural networks used in ML, it is necessary to create a series of large-scale benchmark datasets to test any proposed algorithm for this kind of specific imaging classification. Currently, none of the publicly available datasets in the marine vision research domain have sufficiently large data volumes to reliably train a deep model. In this work, a publicly available large-scale benchmark underwater video dataset is created and used to retrain a state-of-the-art machine vision deep model (MaskRCNN). This model is in turn applied into detecting and classifying underwater marine lives through random under-sampling (RUS), and achieves a reasonably high average precision (0.628 mAP), indicating great applicability of this dataset in training instance segmentation deep neural network for detecting underwater marine species." @default.
- W4220984888 created "2022-04-03" @default.
- W4220984888 creator A5002971389 @default.
- W4220984888 creator A5022651146 @default.
- W4220984888 creator A5056862578 @default.
- W4220984888 creator A5064168994 @default.
- W4220984888 creator A5080435447 @default.
- W4220984888 creator A5089659655 @default.
- W4220984888 date "2022-05-01" @default.
- W4220984888 modified "2023-09-26" @default.
- W4220984888 title "Coastal fisheries resource monitoring through A deep learning-based underwater video analysis" @default.
- W4220984888 cites W1973318484 @default.
- W4220984888 cites W1987605728 @default.
- W4220984888 cites W1990638557 @default.
- W4220984888 cites W2006502079 @default.
- W4220984888 cites W2108684521 @default.
- W4220984888 cites W2147807123 @default.
- W4220984888 cites W2156689933 @default.
- W4220984888 cites W2618530766 @default.
- W4220984888 cites W2783946051 @default.
- W4220984888 cites W2885222893 @default.
- W4220984888 cites W2953094064 @default.
- W4220984888 cites W3121441580 @default.
- W4220984888 cites W639708223 @default.
- W4220984888 doi "https://doi.org/10.1016/j.ecss.2022.107815" @default.
- W4220984888 hasPublicationYear "2022" @default.
- W4220984888 type Work @default.
- W4220984888 citedByCount "8" @default.
- W4220984888 countsByYear W42209848882022 @default.
- W4220984888 countsByYear W42209848882023 @default.
- W4220984888 crossrefType "journal-article" @default.
- W4220984888 hasAuthorship W4220984888A5002971389 @default.
- W4220984888 hasAuthorship W4220984888A5022651146 @default.
- W4220984888 hasAuthorship W4220984888A5056862578 @default.
- W4220984888 hasAuthorship W4220984888A5064168994 @default.
- W4220984888 hasAuthorship W4220984888A5080435447 @default.
- W4220984888 hasAuthorship W4220984888A5089659655 @default.
- W4220984888 hasBestOaLocation W42209848881 @default.
- W4220984888 hasConcept C108583219 @default.
- W4220984888 hasConcept C111368507 @default.
- W4220984888 hasConcept C119857082 @default.
- W4220984888 hasConcept C127313418 @default.
- W4220984888 hasConcept C154945302 @default.
- W4220984888 hasConcept C166957645 @default.
- W4220984888 hasConcept C185798385 @default.
- W4220984888 hasConcept C205649164 @default.
- W4220984888 hasConcept C206345919 @default.
- W4220984888 hasConcept C2778755073 @default.
- W4220984888 hasConcept C2779343474 @default.
- W4220984888 hasConcept C31258907 @default.
- W4220984888 hasConcept C41008148 @default.
- W4220984888 hasConcept C50644808 @default.
- W4220984888 hasConcept C58640448 @default.
- W4220984888 hasConcept C62649853 @default.
- W4220984888 hasConcept C81363708 @default.
- W4220984888 hasConcept C98083399 @default.
- W4220984888 hasConceptScore W4220984888C108583219 @default.
- W4220984888 hasConceptScore W4220984888C111368507 @default.
- W4220984888 hasConceptScore W4220984888C119857082 @default.
- W4220984888 hasConceptScore W4220984888C127313418 @default.
- W4220984888 hasConceptScore W4220984888C154945302 @default.
- W4220984888 hasConceptScore W4220984888C166957645 @default.
- W4220984888 hasConceptScore W4220984888C185798385 @default.
- W4220984888 hasConceptScore W4220984888C205649164 @default.
- W4220984888 hasConceptScore W4220984888C206345919 @default.
- W4220984888 hasConceptScore W4220984888C2778755073 @default.
- W4220984888 hasConceptScore W4220984888C2779343474 @default.
- W4220984888 hasConceptScore W4220984888C31258907 @default.
- W4220984888 hasConceptScore W4220984888C41008148 @default.
- W4220984888 hasConceptScore W4220984888C50644808 @default.
- W4220984888 hasConceptScore W4220984888C58640448 @default.
- W4220984888 hasConceptScore W4220984888C62649853 @default.
- W4220984888 hasConceptScore W4220984888C81363708 @default.
- W4220984888 hasConceptScore W4220984888C98083399 @default.
- W4220984888 hasLocation W42209848881 @default.
- W4220984888 hasLocation W42209848882 @default.
- W4220984888 hasOpenAccess W4220984888 @default.
- W4220984888 hasPrimaryLocation W42209848881 @default.
- W4220984888 hasRelatedWork W2731899572 @default.
- W4220984888 hasRelatedWork W2999805992 @default.
- W4220984888 hasRelatedWork W3116150086 @default.
- W4220984888 hasRelatedWork W3133861977 @default.
- W4220984888 hasRelatedWork W4200173597 @default.
- W4220984888 hasRelatedWork W4223943233 @default.
- W4220984888 hasRelatedWork W4291897433 @default.
- W4220984888 hasRelatedWork W4312417841 @default.
- W4220984888 hasRelatedWork W4321369474 @default.
- W4220984888 hasRelatedWork W4380075502 @default.
- W4220984888 hasVolume "269" @default.
- W4220984888 isParatext "false" @default.
- W4220984888 isRetracted "false" @default.
- W4220984888 workType "article" @default.