Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220988893> ?p ?o ?g. }
- W4220988893 abstract "This article focuses on the research, design and implementation of a prediction tool for air quality to estimate pollutant concentrations, contributing to environmental engineering. It addresses prediction of fine particle air pollutants of diameter less than 2.5 µm (particulate matter 2.5), their concentration being substantially influenced by urban traffic. We collect worldwide multicity data from health-related public sources on which mining is performed using classical data mining/machine learning paradigms: association rules, clustering and classification. Challenges include adapting appropriate techniques based on data, and capturing subtle domain-specific aspects. The prediction tool is built using knowledge discovered by mining, leveraging health standards, catering to novice, intermediate and expert users. The prediction output is accurate, efficient, interpretable and useful as evident from our experiments. The tool is helpful for urban decision support. This work is beneficial in developing software systems such as intelligent tutors, mobile device apps and smart city tools. It contributes to smart environment, mobility and living, making a positive impact on smart cities and sustainability. In this work, we claim that classical computational paradigms in their fundamental form can be adapted to solve environmental engineering problems, with easy comprehension, as per the Occam's razor principle that advocates simplicity. This article constitutes applied research: using computational techniques to solve domain-specific problems. Future work includes exploring models in deep learning such as CNN and Bi-LSTM, and considering different types of pollutants as well as other sources besides multicity traffic data, to conduct further studies. This would address additional challenges with enhancements." @default.
- W4220988893 created "2022-04-03" @default.
- W4220988893 creator A5011275854 @default.
- W4220988893 creator A5011434389 @default.
- W4220988893 creator A5090253347 @default.
- W4220988893 date "2022-03-07" @default.
- W4220988893 modified "2023-10-16" @default.
- W4220988893 title "Prediction Tool on Fine Particle Pollutants and Air Quality for Environmental Engineering" @default.
- W4220988893 cites W124008658 @default.
- W4220988893 cites W1973836017 @default.
- W4220988893 cites W1985339368 @default.
- W4220988893 cites W1999813468 @default.
- W4220988893 cites W2020487351 @default.
- W4220988893 cites W2054658115 @default.
- W4220988893 cites W2081979340 @default.
- W4220988893 cites W2106642101 @default.
- W4220988893 cites W2111700869 @default.
- W4220988893 cites W2113912428 @default.
- W4220988893 cites W2120200133 @default.
- W4220988893 cites W2137326609 @default.
- W4220988893 cites W2147814836 @default.
- W4220988893 cites W2159326981 @default.
- W4220988893 cites W2160428430 @default.
- W4220988893 cites W2164024313 @default.
- W4220988893 cites W2166604768 @default.
- W4220988893 cites W2310365211 @default.
- W4220988893 cites W2442475602 @default.
- W4220988893 cites W2543572554 @default.
- W4220988893 cites W2579405208 @default.
- W4220988893 cites W2679214124 @default.
- W4220988893 cites W2754790542 @default.
- W4220988893 cites W2776048679 @default.
- W4220988893 cites W2799076212 @default.
- W4220988893 cites W2806498513 @default.
- W4220988893 cites W2905033225 @default.
- W4220988893 cites W2919588690 @default.
- W4220988893 cites W2967819411 @default.
- W4220988893 cites W2998301900 @default.
- W4220988893 cites W2998574808 @default.
- W4220988893 cites W3010267415 @default.
- W4220988893 cites W3015561731 @default.
- W4220988893 cites W3036580323 @default.
- W4220988893 cites W3129439591 @default.
- W4220988893 cites W3130859074 @default.
- W4220988893 cites W3197211575 @default.
- W4220988893 cites W325871496 @default.
- W4220988893 cites W2040208025 @default.
- W4220988893 doi "https://doi.org/10.1007/s42979-022-01068-2" @default.
- W4220988893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35280455" @default.
- W4220988893 hasPublicationYear "2022" @default.
- W4220988893 type Work @default.
- W4220988893 citedByCount "2" @default.
- W4220988893 countsByYear W42209888932023 @default.
- W4220988893 crossrefType "journal-article" @default.
- W4220988893 hasAuthorship W4220988893A5011275854 @default.
- W4220988893 hasAuthorship W4220988893A5011434389 @default.
- W4220988893 hasAuthorship W4220988893A5090253347 @default.
- W4220988893 hasBestOaLocation W42209888931 @default.
- W4220988893 hasConcept C111472728 @default.
- W4220988893 hasConcept C119857082 @default.
- W4220988893 hasConcept C121332964 @default.
- W4220988893 hasConcept C126314574 @default.
- W4220988893 hasConcept C127413603 @default.
- W4220988893 hasConcept C134306372 @default.
- W4220988893 hasConcept C138885662 @default.
- W4220988893 hasConcept C153294291 @default.
- W4220988893 hasConcept C154945302 @default.
- W4220988893 hasConcept C18762648 @default.
- W4220988893 hasConcept C18903297 @default.
- W4220988893 hasConcept C2522767166 @default.
- W4220988893 hasConcept C2779530757 @default.
- W4220988893 hasConcept C33923547 @default.
- W4220988893 hasConcept C36503486 @default.
- W4220988893 hasConcept C41008148 @default.
- W4220988893 hasConcept C66204764 @default.
- W4220988893 hasConcept C73555534 @default.
- W4220988893 hasConcept C78519656 @default.
- W4220988893 hasConcept C86803240 @default.
- W4220988893 hasConceptScore W4220988893C111472728 @default.
- W4220988893 hasConceptScore W4220988893C119857082 @default.
- W4220988893 hasConceptScore W4220988893C121332964 @default.
- W4220988893 hasConceptScore W4220988893C126314574 @default.
- W4220988893 hasConceptScore W4220988893C127413603 @default.
- W4220988893 hasConceptScore W4220988893C134306372 @default.
- W4220988893 hasConceptScore W4220988893C138885662 @default.
- W4220988893 hasConceptScore W4220988893C153294291 @default.
- W4220988893 hasConceptScore W4220988893C154945302 @default.
- W4220988893 hasConceptScore W4220988893C18762648 @default.
- W4220988893 hasConceptScore W4220988893C18903297 @default.
- W4220988893 hasConceptScore W4220988893C2522767166 @default.
- W4220988893 hasConceptScore W4220988893C2779530757 @default.
- W4220988893 hasConceptScore W4220988893C33923547 @default.
- W4220988893 hasConceptScore W4220988893C36503486 @default.
- W4220988893 hasConceptScore W4220988893C41008148 @default.
- W4220988893 hasConceptScore W4220988893C66204764 @default.
- W4220988893 hasConceptScore W4220988893C73555534 @default.
- W4220988893 hasConceptScore W4220988893C78519656 @default.
- W4220988893 hasConceptScore W4220988893C86803240 @default.
- W4220988893 hasFunder F4320306076 @default.
- W4220988893 hasIssue "3" @default.