Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220993052> ?p ?o ?g. }
- W4220993052 endingPage "177" @default.
- W4220993052 startingPage "164" @default.
- W4220993052 abstract "A personalized medication regimen provides precise treatment for an individual and can be guided by pre-clinical drug screening. The economical and high-efficiency simulation of the liver tumor microenvironment (TME) in a drug-screening model has high value yet challenging to accomplish. Herein, we propose a simulation of the liver TME with suspended alginate-gelatin hydrogel capsules encapsulating patient-derived liver tumor multicellular clusters, and the culture of patient-derived tumor organoids(PDTOs) for personalized pre-clinical drug screening. The hydrogel capsule offers a 3D matrix environment with mechanical and biological properties similar to those of the liver in vivo. As a result, 18 of the 28 patient-derived multicellular clusters were successfully cultured as PDTOs. These PDTOs, along with hepatocyte growth factor (HGF) of non-cellular components, preserve stromal cells, including cancer-associated fibroblasts (CAFs) and vascular endothelial cells (VECs). They also maintain stable expression of molecular markers and tumor heterogeneity similar to those of the original liver tumors. Drugs, including cabazitaxel, oxaliplatin, and sorafenib, were tested in PDTOs. The sensitivity of PDTOs to these drugs differs between individuals. The sensitivity of one PDTO to oxaliplatin was validated using magnetic resonance imaging (MRI) and biochemical tests after oxaliplatin clinical treatment of the corresponding patient. Therefore, this approach is promising for economical, accurate, and high-throughput drug screening for personalized treatment." @default.
- W4220993052 created "2022-04-03" @default.
- W4220993052 creator A5008715397 @default.
- W4220993052 creator A5009158676 @default.
- W4220993052 creator A5011486049 @default.
- W4220993052 creator A5013898541 @default.
- W4220993052 creator A5016074700 @default.
- W4220993052 creator A5028996216 @default.
- W4220993052 creator A5061734415 @default.
- W4220993052 creator A5065893033 @default.
- W4220993052 creator A5065895409 @default.
- W4220993052 creator A5070992597 @default.
- W4220993052 creator A5090404762 @default.
- W4220993052 date "2022-12-01" @default.
- W4220993052 modified "2023-10-14" @default.
- W4220993052 title "Culture of patient-derived multicellular clusters in suspended hydrogel capsules for pre-clinical personalized drug screening" @default.
- W4220993052 cites W1961416321 @default.
- W4220993052 cites W1965157206 @default.
- W4220993052 cites W1971500643 @default.
- W4220993052 cites W2031148592 @default.
- W4220993052 cites W2041356700 @default.
- W4220993052 cites W2067281101 @default.
- W4220993052 cites W2084992092 @default.
- W4220993052 cites W2149667120 @default.
- W4220993052 cites W2441337908 @default.
- W4220993052 cites W2594153159 @default.
- W4220993052 cites W2610784388 @default.
- W4220993052 cites W2618605631 @default.
- W4220993052 cites W2782830341 @default.
- W4220993052 cites W2791474033 @default.
- W4220993052 cites W2800187340 @default.
- W4220993052 cites W2802082717 @default.
- W4220993052 cites W2809986038 @default.
- W4220993052 cites W2810135019 @default.
- W4220993052 cites W2885650843 @default.
- W4220993052 cites W2887409499 @default.
- W4220993052 cites W2895383337 @default.
- W4220993052 cites W2899911867 @default.
- W4220993052 cites W2900098081 @default.
- W4220993052 cites W2903583974 @default.
- W4220993052 cites W2907304027 @default.
- W4220993052 cites W2915238057 @default.
- W4220993052 cites W2943200725 @default.
- W4220993052 cites W2944000240 @default.
- W4220993052 cites W2947526743 @default.
- W4220993052 cites W2951053164 @default.
- W4220993052 cites W2953395929 @default.
- W4220993052 cites W2960395058 @default.
- W4220993052 cites W2964772567 @default.
- W4220993052 cites W2967862260 @default.
- W4220993052 cites W2990485971 @default.
- W4220993052 cites W2994771578 @default.
- W4220993052 cites W2996862224 @default.
- W4220993052 cites W2999829382 @default.
- W4220993052 cites W3008636104 @default.
- W4220993052 cites W3012849802 @default.
- W4220993052 cites W3014899725 @default.
- W4220993052 cites W3037227746 @default.
- W4220993052 cites W3080612021 @default.
- W4220993052 cites W3080963474 @default.
- W4220993052 cites W3085416127 @default.
- W4220993052 cites W3087688686 @default.
- W4220993052 cites W3087860542 @default.
- W4220993052 cites W3098037024 @default.
- W4220993052 cites W3112962917 @default.
- W4220993052 cites W3113296216 @default.
- W4220993052 cites W3115276970 @default.
- W4220993052 cites W3123429282 @default.
- W4220993052 cites W3127859161 @default.
- W4220993052 cites W3131221939 @default.
- W4220993052 cites W3131612759 @default.
- W4220993052 cites W3133476978 @default.
- W4220993052 cites W3134527076 @default.
- W4220993052 cites W3135752384 @default.
- W4220993052 cites W3137399879 @default.
- W4220993052 cites W3137448821 @default.
- W4220993052 cites W3152576823 @default.
- W4220993052 cites W3155589735 @default.
- W4220993052 cites W3156256523 @default.
- W4220993052 cites W3156585165 @default.
- W4220993052 cites W3156779747 @default.
- W4220993052 cites W3172011806 @default.
- W4220993052 cites W3175306998 @default.
- W4220993052 cites W3178716145 @default.
- W4220993052 cites W3182858109 @default.
- W4220993052 cites W3195613190 @default.
- W4220993052 cites W3198681453 @default.
- W4220993052 cites W3201025352 @default.
- W4220993052 cites W3202205923 @default.
- W4220993052 cites W3202678049 @default.
- W4220993052 cites W3209464279 @default.
- W4220993052 cites W3209702733 @default.
- W4220993052 cites W3211005884 @default.
- W4220993052 cites W3215449753 @default.
- W4220993052 cites W3217148640 @default.
- W4220993052 cites W4237428198 @default.
- W4220993052 doi "https://doi.org/10.1016/j.bioactmat.2022.03.020" @default.
- W4220993052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35387168" @default.