Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220993352> ?p ?o ?g. }
- W4220993352 endingPage "587" @default.
- W4220993352 startingPage "565" @default.
- W4220993352 abstract "Natural water bodies are present in several forms: oceans, large and small lakes, and a diversity of rivers and streams. All these ecosystems feature a unique conglomeration of aquatic biotas that are profoundly dependent on the degree of water quality. Based on the type of the cooling system, natural water is the preferred medium for cooling in many industries. Therefore, large chemical industries and power plants are located near coastal areas or on the banks of big rivers, so they can utilize these abundant water resources [1]. The cooling water requirements (type and volume) vary with the industrial unit. The steam produced in the boiler turns the turbine of a power plant to generate electricity. That steam is generated from technically pure water, which cannot be disposed of for economic reasons. Thus, the steam is condensed in a condenser (a heat exchanger) using freshwater or seawater (depending on the availability) as a cooling medium. The quantity of water used for this purpose is very high and depends on the power production capability of the plant as well as the nature of the chemical industry [1]. For example, a 440 MW(e) nuclear power plant at Kalpakkam, east coast of India, requires 35 m3/s of seawater for cooling purposes, while a chemical 600 ton/day ammonia production chemical plant needs 1.8 m3/s of cooling water. Likewise, an oil refinery needs cooling water 12 times the flow of crude oil, as per the capacity. Comparatively, a 1000 MW(e) thermal power plant needs 30 m3/s of water for cooling purposes, whereas a nuclear power plant with similar capacity needs 48 m3/s (1.5 times more water). Thus, the quantity of water required for cooling is often so large that at times, it can affect even the choice of a plant site. The construction and continued operation of power plants, particularly those fueled by fossil or nuclear fuels, are among the human activities that can have the most profound and wide-ranging impacts on water quality. Due to the continuous interactions between the constituents of cooling water and the pipeline materials, problems like scaling, corrosion, and biological growth ensue, ultimately resulting in unscheduled plant shutdowns and consequent production losses. In view of the vital use of water in an industry, there is a need for proper cooling water treatment for controlling scale, corrosion, and biofouling [1–3]." @default.
- W4220993352 created "2022-04-03" @default.
- W4220993352 creator A5091674965 @default.
- W4220993352 date "2022-01-01" @default.
- W4220993352 modified "2023-10-14" @default.
- W4220993352 title "Biofouling (macro-fouling) in seawater intake systems" @default.
- W4220993352 cites W1809263859 @default.
- W4220993352 cites W1924182601 @default.
- W4220993352 cites W1966070546 @default.
- W4220993352 cites W1966244793 @default.
- W4220993352 cites W1973297393 @default.
- W4220993352 cites W1983018664 @default.
- W4220993352 cites W1984736129 @default.
- W4220993352 cites W1988885387 @default.
- W4220993352 cites W1989536466 @default.
- W4220993352 cites W1992754283 @default.
- W4220993352 cites W1993055252 @default.
- W4220993352 cites W1996803873 @default.
- W4220993352 cites W1997063615 @default.
- W4220993352 cites W1998165937 @default.
- W4220993352 cites W1999212488 @default.
- W4220993352 cites W2003136532 @default.
- W4220993352 cites W2008737018 @default.
- W4220993352 cites W2017646558 @default.
- W4220993352 cites W2018352941 @default.
- W4220993352 cites W2018897299 @default.
- W4220993352 cites W2020286635 @default.
- W4220993352 cites W2028414319 @default.
- W4220993352 cites W2029125276 @default.
- W4220993352 cites W2030790296 @default.
- W4220993352 cites W2044670534 @default.
- W4220993352 cites W2047205148 @default.
- W4220993352 cites W2048738519 @default.
- W4220993352 cites W2048808551 @default.
- W4220993352 cites W2049810870 @default.
- W4220993352 cites W2053639966 @default.
- W4220993352 cites W2053740207 @default.
- W4220993352 cites W2058745706 @default.
- W4220993352 cites W2072392275 @default.
- W4220993352 cites W2078428945 @default.
- W4220993352 cites W2086620837 @default.
- W4220993352 cites W2087603554 @default.
- W4220993352 cites W2088690135 @default.
- W4220993352 cites W2089742589 @default.
- W4220993352 cites W2091940765 @default.
- W4220993352 cites W2094476201 @default.
- W4220993352 cites W2100396868 @default.
- W4220993352 cites W2105578123 @default.
- W4220993352 cites W2113230762 @default.
- W4220993352 cites W2113452346 @default.
- W4220993352 cites W2116019837 @default.
- W4220993352 cites W2116553382 @default.
- W4220993352 cites W2117331520 @default.
- W4220993352 cites W2127484592 @default.
- W4220993352 cites W2129477289 @default.
- W4220993352 cites W2131775303 @default.
- W4220993352 cites W2133886940 @default.
- W4220993352 cites W2138584262 @default.
- W4220993352 cites W2138698485 @default.
- W4220993352 cites W2140654423 @default.
- W4220993352 cites W2158415495 @default.
- W4220993352 cites W2162351442 @default.
- W4220993352 cites W2166742043 @default.
- W4220993352 cites W2167431158 @default.
- W4220993352 cites W2325342093 @default.
- W4220993352 cites W2327362786 @default.
- W4220993352 cites W2327629952 @default.
- W4220993352 cites W2410406769 @default.
- W4220993352 cites W2583192584 @default.
- W4220993352 cites W2588984067 @default.
- W4220993352 cites W2738985157 @default.
- W4220993352 cites W2749483676 @default.
- W4220993352 cites W2749934625 @default.
- W4220993352 cites W2766336216 @default.
- W4220993352 cites W2781781587 @default.
- W4220993352 cites W2802117933 @default.
- W4220993352 cites W2892676222 @default.
- W4220993352 cites W2923903466 @default.
- W4220993352 cites W2945071568 @default.
- W4220993352 cites W2983481558 @default.
- W4220993352 cites W318067151 @default.
- W4220993352 cites W4250538726 @default.
- W4220993352 cites W1973931098 @default.
- W4220993352 doi "https://doi.org/10.1016/b978-0-12-822896-8.00016-9" @default.
- W4220993352 hasPublicationYear "2022" @default.
- W4220993352 type Work @default.
- W4220993352 citedByCount "1" @default.
- W4220993352 crossrefType "book-chapter" @default.
- W4220993352 hasAuthorship W4220993352A5091674965 @default.
- W4220993352 hasConcept C105168734 @default.
- W4220993352 hasConcept C107706546 @default.
- W4220993352 hasConcept C111368507 @default.
- W4220993352 hasConcept C115792997 @default.
- W4220993352 hasConcept C119599485 @default.
- W4220993352 hasConcept C120665830 @default.
- W4220993352 hasConcept C121332964 @default.
- W4220993352 hasConcept C127313418 @default.
- W4220993352 hasConcept C127413603 @default.