Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220994377> ?p ?o ?g. }
- W4220994377 endingPage "992" @default.
- W4220994377 startingPage "992" @default.
- W4220994377 abstract "Random invariant manifolds are geometric objects useful for understanding dynamics near the random fixed point under stochastic influences. Under the framework of a dynamical system, we compared perturbed random non-autonomous partial differential equations with original stochastic non-autonomous partial differential equations. Mainly, we derived some pathwise approximation results of random invariant manifolds when the Gaussian white noise was replaced by colored noise, which is a type of Wong–Zakai approximation." @default.
- W4220994377 created "2022-04-03" @default.
- W4220994377 creator A5032125705 @default.
- W4220994377 creator A5088985564 @default.
- W4220994377 creator A5089327549 @default.
- W4220994377 date "2022-03-19" @default.
- W4220994377 modified "2023-09-26" @default.
- W4220994377 title "Random Perturbation of Invariant Manifolds for Non-Autonomous Dynamical Systems" @default.
- W4220994377 cites W1963932485 @default.
- W4220994377 cites W1967461645 @default.
- W4220994377 cites W1967701615 @default.
- W4220994377 cites W1984914275 @default.
- W4220994377 cites W1986101505 @default.
- W4220994377 cites W1989036699 @default.
- W4220994377 cites W1989231450 @default.
- W4220994377 cites W2003204684 @default.
- W4220994377 cites W2003534491 @default.
- W4220994377 cites W2006281777 @default.
- W4220994377 cites W2008429010 @default.
- W4220994377 cites W2012999899 @default.
- W4220994377 cites W2031721221 @default.
- W4220994377 cites W2032006621 @default.
- W4220994377 cites W2048393179 @default.
- W4220994377 cites W2053189478 @default.
- W4220994377 cites W2079874713 @default.
- W4220994377 cites W2115671991 @default.
- W4220994377 cites W2165234069 @default.
- W4220994377 cites W2737333469 @default.
- W4220994377 cites W2769297618 @default.
- W4220994377 cites W2780558565 @default.
- W4220994377 cites W2896068237 @default.
- W4220994377 cites W2920689604 @default.
- W4220994377 cites W2964213699 @default.
- W4220994377 cites W3019520865 @default.
- W4220994377 cites W3045575949 @default.
- W4220994377 cites W3101325462 @default.
- W4220994377 cites W3103931584 @default.
- W4220994377 cites W4250087930 @default.
- W4220994377 doi "https://doi.org/10.3390/math10060992" @default.
- W4220994377 hasPublicationYear "2022" @default.
- W4220994377 type Work @default.
- W4220994377 citedByCount "0" @default.
- W4220994377 crossrefType "journal-article" @default.
- W4220994377 hasAuthorship W4220994377A5032125705 @default.
- W4220994377 hasAuthorship W4220994377A5088985564 @default.
- W4220994377 hasAuthorship W4220994377A5089327549 @default.
- W4220994377 hasBestOaLocation W42209943771 @default.
- W4220994377 hasConcept C105795698 @default.
- W4220994377 hasConcept C112633086 @default.
- W4220994377 hasConcept C114275822 @default.
- W4220994377 hasConcept C114996537 @default.
- W4220994377 hasConcept C121332964 @default.
- W4220994377 hasConcept C134306372 @default.
- W4220994377 hasConcept C163716315 @default.
- W4220994377 hasConcept C177918212 @default.
- W4220994377 hasConcept C190470478 @default.
- W4220994377 hasConcept C193817511 @default.
- W4220994377 hasConcept C28826006 @default.
- W4220994377 hasConcept C33923547 @default.
- W4220994377 hasConcept C37914503 @default.
- W4220994377 hasConcept C51955184 @default.
- W4220994377 hasConcept C61445026 @default.
- W4220994377 hasConcept C62520636 @default.
- W4220994377 hasConcept C6802819 @default.
- W4220994377 hasConcept C79379906 @default.
- W4220994377 hasConcept C84629840 @default.
- W4220994377 hasConcept C93779851 @default.
- W4220994377 hasConceptScore W4220994377C105795698 @default.
- W4220994377 hasConceptScore W4220994377C112633086 @default.
- W4220994377 hasConceptScore W4220994377C114275822 @default.
- W4220994377 hasConceptScore W4220994377C114996537 @default.
- W4220994377 hasConceptScore W4220994377C121332964 @default.
- W4220994377 hasConceptScore W4220994377C134306372 @default.
- W4220994377 hasConceptScore W4220994377C163716315 @default.
- W4220994377 hasConceptScore W4220994377C177918212 @default.
- W4220994377 hasConceptScore W4220994377C190470478 @default.
- W4220994377 hasConceptScore W4220994377C193817511 @default.
- W4220994377 hasConceptScore W4220994377C28826006 @default.
- W4220994377 hasConceptScore W4220994377C33923547 @default.
- W4220994377 hasConceptScore W4220994377C37914503 @default.
- W4220994377 hasConceptScore W4220994377C51955184 @default.
- W4220994377 hasConceptScore W4220994377C61445026 @default.
- W4220994377 hasConceptScore W4220994377C62520636 @default.
- W4220994377 hasConceptScore W4220994377C6802819 @default.
- W4220994377 hasConceptScore W4220994377C79379906 @default.
- W4220994377 hasConceptScore W4220994377C84629840 @default.
- W4220994377 hasConceptScore W4220994377C93779851 @default.
- W4220994377 hasFunder F4320321001 @default.
- W4220994377 hasIssue "6" @default.
- W4220994377 hasLocation W42209943771 @default.
- W4220994377 hasOpenAccess W4220994377 @default.
- W4220994377 hasPrimaryLocation W42209943771 @default.
- W4220994377 hasRelatedWork W1989418097 @default.
- W4220994377 hasRelatedWork W2033832349 @default.
- W4220994377 hasRelatedWork W2338546390 @default.
- W4220994377 hasRelatedWork W2389644175 @default.
- W4220994377 hasRelatedWork W2952656496 @default.
- W4220994377 hasRelatedWork W2972684533 @default.