Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220996532> ?p ?o ?g. }
- W4220996532 endingPage "19322" @default.
- W4220996532 startingPage "19309" @default.
- W4220996532 abstract "Driver distraction diverting drivers’ attention to unrelated tasks and decreasing the ability to control vehicles, has aroused widespread concern about driving safety. Previous studies have found that driving performance decreases after distraction and have used vehicle behavioral features to detect distraction. But how brain activity changes while distraction remains unknown. Electroencephalography (EEG), a reliable indicator of brain activities has been widely employed in many fields. However, challenges still exist in mining the distraction information of EEG in realistic driving scenarios with uncertain information. In this paper, we propose a novel framework based on Multi-scale entropy (MSE) in a sliding window and Bidirectional Long Short-term Memory Network (BiLSTM) to explore the distraction information of EEG to detect driver distraction based on multi-modality signals in real traffic. Firstly, MSE with sliding window is implemented to extract the EEG features to determine the distraction position. Statistical analysis of vehicle behavioral data is then performed to validate driving performance indeed changes around distraction position. Finally, we use BiLSTM to detect driver distraction with MSE and other traditional features. Our results show that MSE notably decreases after distraction. Consistent with the result of MSE, driving performance significantly deviates from the normal state after distraction. Besides, BiLSTM performance of MSE outperforms other entropy-based methods and is better than behavioral features. Additionally, the accuracy is improved again after adding MSE feature to behavioral features with a 3% increasement. The proposed framework is useful for mining brain activity information and driver distraction detection applications in realistic driving scenarios." @default.
- W4220996532 created "2022-04-03" @default.
- W4220996532 creator A5016857895 @default.
- W4220996532 creator A5042937962 @default.
- W4220996532 creator A5050768422 @default.
- W4220996532 creator A5065426308 @default.
- W4220996532 creator A5071180608 @default.
- W4220996532 date "2022-10-01" @default.
- W4220996532 modified "2023-10-14" @default.
- W4220996532 title "Driver Distraction Detection Using Bidirectional Long Short-Term Network Based on Multiscale Entropy of EEG" @default.
- W4220996532 cites W1536006551 @default.
- W4220996532 cites W1970352604 @default.
- W4220996532 cites W1987654648 @default.
- W4220996532 cites W1995182607 @default.
- W4220996532 cites W1995216279 @default.
- W4220996532 cites W1995848747 @default.
- W4220996532 cites W2004104731 @default.
- W4220996532 cites W2004210413 @default.
- W4220996532 cites W2011635588 @default.
- W4220996532 cites W2023133322 @default.
- W4220996532 cites W2052604480 @default.
- W4220996532 cites W2056925087 @default.
- W4220996532 cites W2059851411 @default.
- W4220996532 cites W2060555212 @default.
- W4220996532 cites W2064675550 @default.
- W4220996532 cites W2086983697 @default.
- W4220996532 cites W2093266575 @default.
- W4220996532 cites W2095898844 @default.
- W4220996532 cites W2101629127 @default.
- W4220996532 cites W2121955477 @default.
- W4220996532 cites W2123386666 @default.
- W4220996532 cites W2127864857 @default.
- W4220996532 cites W2151227774 @default.
- W4220996532 cites W2152264487 @default.
- W4220996532 cites W2155009910 @default.
- W4220996532 cites W2166880842 @default.
- W4220996532 cites W2198415016 @default.
- W4220996532 cites W2343672207 @default.
- W4220996532 cites W2572116989 @default.
- W4220996532 cites W2618484442 @default.
- W4220996532 cites W2735189551 @default.
- W4220996532 cites W2797503983 @default.
- W4220996532 cites W2802669571 @default.
- W4220996532 cites W2811233935 @default.
- W4220996532 cites W2839695880 @default.
- W4220996532 cites W2878521835 @default.
- W4220996532 cites W2883396475 @default.
- W4220996532 cites W2892217709 @default.
- W4220996532 cites W2910745381 @default.
- W4220996532 cites W2912191859 @default.
- W4220996532 cites W2912346386 @default.
- W4220996532 cites W2912966400 @default.
- W4220996532 cites W2914298960 @default.
- W4220996532 cites W2914767245 @default.
- W4220996532 cites W2918092040 @default.
- W4220996532 cites W2947978977 @default.
- W4220996532 cites W2952113293 @default.
- W4220996532 cites W2955154870 @default.
- W4220996532 cites W2976031135 @default.
- W4220996532 cites W2998583340 @default.
- W4220996532 cites W3006586803 @default.
- W4220996532 cites W3008185230 @default.
- W4220996532 cites W3010878087 @default.
- W4220996532 cites W3017833007 @default.
- W4220996532 cites W3020727770 @default.
- W4220996532 cites W3047930837 @default.
- W4220996532 cites W3048208404 @default.
- W4220996532 cites W3089356117 @default.
- W4220996532 cites W3094104831 @default.
- W4220996532 cites W3175829748 @default.
- W4220996532 cites W3183373935 @default.
- W4220996532 cites W3210321636 @default.
- W4220996532 cites W4206541856 @default.
- W4220996532 doi "https://doi.org/10.1109/tits.2022.3159602" @default.
- W4220996532 hasPublicationYear "2022" @default.
- W4220996532 type Work @default.
- W4220996532 citedByCount "10" @default.
- W4220996532 countsByYear W42209965322022 @default.
- W4220996532 countsByYear W42209965322023 @default.
- W4220996532 crossrefType "journal-article" @default.
- W4220996532 hasAuthorship W4220996532A5016857895 @default.
- W4220996532 hasAuthorship W4220996532A5042937962 @default.
- W4220996532 hasAuthorship W4220996532A5050768422 @default.
- W4220996532 hasAuthorship W4220996532A5065426308 @default.
- W4220996532 hasAuthorship W4220996532A5071180608 @default.
- W4220996532 hasBestOaLocation W42209965322 @default.
- W4220996532 hasConcept C106301342 @default.
- W4220996532 hasConcept C118552586 @default.
- W4220996532 hasConcept C121332964 @default.
- W4220996532 hasConcept C153180895 @default.
- W4220996532 hasConcept C154945302 @default.
- W4220996532 hasConcept C15744967 @default.
- W4220996532 hasConcept C180747234 @default.
- W4220996532 hasConcept C2776378700 @default.
- W4220996532 hasConcept C2780689630 @default.
- W4220996532 hasConcept C41008148 @default.
- W4220996532 hasConcept C522805319 @default.
- W4220996532 hasConcept C62520636 @default.