Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220996671> ?p ?o ?g. }
- W4220996671 endingPage "472" @default.
- W4220996671 startingPage "463" @default.
- W4220996671 abstract "Landslides are geological hazards that can have severe impacts, threatening both the people and the local environment of highlands or mountain slopes. Landslide susceptibility mapping is an essential tool for predicting landslides and mitigating landslide-associated damage in areas prone to these events. This study aims to investigate the combination of using an adaptive network-based fuzzy inference system (ANFIS) with metaheuristic optimization algorithms: gray wolf optimizer (GWO), particle swarm optimization algorithm (PSO), and the imperialist competitive algorithm (ICA) in mapping landslide potential. The study area was Pyeongchang-gun, South Korea, for which an accurate landslide inventory dataset is available. A landslide inventory map was organized, and the data were separated randomly into training data (70%) and validation data (30%). In addition, 16 landslide-related factors consisting of geo-environmental and topo-hydrological factors were considered as predictive variables. This landslide susceptibility model was be evaluated based on the value of the area under the receiver operating characteristic (ROC) curve (AUC) to measure its accuracy. Based on the maps, the validation results showed that the optimized models of ANFIS-ICA, ANFIS-PSO, and ANFIS-GWO had AUC accuracies of 0.927, 0.947, and 0.968, respectively. The result from the hybrid algorithms model of ANFIS with metaheuristic algorithms outperformed the standalone ANFIS model in terms of accuracy in predicting landslide potential. Therefore, the ML algorithm and optimization algorithm models proposed in this study are more suitable for landslide susceptibility mapping in the study area." @default.
- W4220996671 created "2022-04-03" @default.
- W4220996671 creator A5007160576 @default.
- W4220996671 creator A5039122205 @default.
- W4220996671 creator A5045171576 @default.
- W4220996671 creator A5056706783 @default.
- W4220996671 creator A5072830845 @default.
- W4220996671 creator A5077439959 @default.
- W4220996671 date "2022-08-01" @default.
- W4220996671 modified "2023-10-14" @default.
- W4220996671 title "Mapping of landslide potential in Pyeongchang-gun, South Korea, using machine learning meta-based optimization algorithms" @default.
- W4220996671 cites W1980725494 @default.
- W4220996671 cites W1986449207 @default.
- W4220996671 cites W1994214164 @default.
- W4220996671 cites W1997612043 @default.
- W4220996671 cites W2002586590 @default.
- W4220996671 cites W2017860970 @default.
- W4220996671 cites W2019486497 @default.
- W4220996671 cites W2028124403 @default.
- W4220996671 cites W2033011996 @default.
- W4220996671 cites W2035737123 @default.
- W4220996671 cites W2038493646 @default.
- W4220996671 cites W2039397179 @default.
- W4220996671 cites W2042229599 @default.
- W4220996671 cites W2054036854 @default.
- W4220996671 cites W2061438946 @default.
- W4220996671 cites W2071367639 @default.
- W4220996671 cites W2088730795 @default.
- W4220996671 cites W2147373555 @default.
- W4220996671 cites W2158698691 @default.
- W4220996671 cites W2312122167 @default.
- W4220996671 cites W2557002900 @default.
- W4220996671 cites W2592926057 @default.
- W4220996671 cites W2609194414 @default.
- W4220996671 cites W2792546905 @default.
- W4220996671 cites W2793831793 @default.
- W4220996671 cites W2885746866 @default.
- W4220996671 cites W2890029039 @default.
- W4220996671 cites W2903133439 @default.
- W4220996671 cites W2907066318 @default.
- W4220996671 cites W2909188960 @default.
- W4220996671 cites W2954332586 @default.
- W4220996671 cites W2965059688 @default.
- W4220996671 cites W2973756609 @default.
- W4220996671 cites W3005068726 @default.
- W4220996671 cites W3023830374 @default.
- W4220996671 cites W3033772434 @default.
- W4220996671 cites W3035223767 @default.
- W4220996671 cites W3041870784 @default.
- W4220996671 cites W3045757784 @default.
- W4220996671 cites W3049651666 @default.
- W4220996671 cites W3089746666 @default.
- W4220996671 cites W3096889504 @default.
- W4220996671 cites W3097217275 @default.
- W4220996671 cites W3112585178 @default.
- W4220996671 cites W3120160481 @default.
- W4220996671 cites W3206495680 @default.
- W4220996671 cites W4200380575 @default.
- W4220996671 doi "https://doi.org/10.1016/j.ejrs.2022.03.008" @default.
- W4220996671 hasPublicationYear "2022" @default.
- W4220996671 type Work @default.
- W4220996671 citedByCount "3" @default.
- W4220996671 countsByYear W42209966712022 @default.
- W4220996671 countsByYear W42209966712023 @default.
- W4220996671 crossrefType "journal-article" @default.
- W4220996671 hasAuthorship W4220996671A5007160576 @default.
- W4220996671 hasAuthorship W4220996671A5039122205 @default.
- W4220996671 hasAuthorship W4220996671A5045171576 @default.
- W4220996671 hasAuthorship W4220996671A5056706783 @default.
- W4220996671 hasAuthorship W4220996671A5072830845 @default.
- W4220996671 hasAuthorship W4220996671A5077439959 @default.
- W4220996671 hasBestOaLocation W42209966711 @default.
- W4220996671 hasConcept C101219045 @default.
- W4220996671 hasConcept C109718341 @default.
- W4220996671 hasConcept C11413529 @default.
- W4220996671 hasConcept C114793014 @default.
- W4220996671 hasConcept C119857082 @default.
- W4220996671 hasConcept C124101348 @default.
- W4220996671 hasConcept C127313418 @default.
- W4220996671 hasConcept C154945302 @default.
- W4220996671 hasConcept C186108316 @default.
- W4220996671 hasConcept C186295008 @default.
- W4220996671 hasConcept C195975749 @default.
- W4220996671 hasConcept C41008148 @default.
- W4220996671 hasConcept C4935549 @default.
- W4220996671 hasConcept C58166 @default.
- W4220996671 hasConcept C58471807 @default.
- W4220996671 hasConcept C85617194 @default.
- W4220996671 hasConceptScore W4220996671C101219045 @default.
- W4220996671 hasConceptScore W4220996671C109718341 @default.
- W4220996671 hasConceptScore W4220996671C11413529 @default.
- W4220996671 hasConceptScore W4220996671C114793014 @default.
- W4220996671 hasConceptScore W4220996671C119857082 @default.
- W4220996671 hasConceptScore W4220996671C124101348 @default.
- W4220996671 hasConceptScore W4220996671C127313418 @default.
- W4220996671 hasConceptScore W4220996671C154945302 @default.
- W4220996671 hasConceptScore W4220996671C186108316 @default.
- W4220996671 hasConceptScore W4220996671C186295008 @default.