Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220996817> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4220996817 abstract "Blood distinction has important role in the fields of biomedical diagnosis, animal quarantine, criminal investigation and blood products safety. The non-invasive detection will be the inevitable trend in the future development of blood distinction. In the work, the near infrared spectroscopy method was used to distinguish the real blood and fake blood. In the experiments, four kinds of animal blood (horse, cow, rabbit and sheep) and two kinds of fake blood (props blood and red ink) in total of 150 groups were used. And the near infrared (NIR) spectra of all blood samples were captured from 4000cm<sup>-1</sup> to 10000cm<sup>-1</sup> by using a set of Fourier transform NIR spectroscope in the diffuse reflection acquisition mode. Due to the problems of serious spectra overlap, the accuracy distinction of real blood and fake blood is very difficult between the real blood or between the fake blood although the spectra difference is large between the real blood and the fake blood. To ensure the accuracy of distinguishing the real and fake blood, back-propagation (BP) neural network algorithm was used. The NIR spectra of all blood samples with full wavelengths were used as the input data, and 1, 2, 3, 4, 5 and 6 were used to label the different kinds of blood. After training of 120 groups of training blood samples, 30 groups of test blood samples were used to test the accuracy rate of distinction of blood. The correct rate is 66.7%. To improve the correct rate, the genetic algorithm (GA) was used to optimize the weights and thresholds of BP neural network. Moreover, the effects of the number of neurons in the hidden layer, the learning rate factor, iteration times, and the training times on the correct rate and the mean square error were all investigated. Under the optimized parameters, the correct rate of the BP-GA algorithm can reach 96.7%." @default.
- W4220996817 created "2022-04-03" @default.
- W4220996817 creator A5005047119 @default.
- W4220996817 creator A5013297039 @default.
- W4220996817 creator A5026301514 @default.
- W4220996817 creator A5048277059 @default.
- W4220996817 creator A5070638512 @default.
- W4220996817 date "2022-03-27" @default.
- W4220996817 modified "2023-09-23" @default.
- W4220996817 title "Blood discrimination based on NIR spectroscopy and BP neural network combined with genetic algorithm" @default.
- W4220996817 doi "https://doi.org/10.1117/12.2623013" @default.
- W4220996817 hasPublicationYear "2022" @default.
- W4220996817 type Work @default.
- W4220996817 citedByCount "0" @default.
- W4220996817 crossrefType "proceedings-article" @default.
- W4220996817 hasAuthorship W4220996817A5005047119 @default.
- W4220996817 hasAuthorship W4220996817A5013297039 @default.
- W4220996817 hasAuthorship W4220996817A5026301514 @default.
- W4220996817 hasAuthorship W4220996817A5048277059 @default.
- W4220996817 hasAuthorship W4220996817A5070638512 @default.
- W4220996817 hasConcept C120665830 @default.
- W4220996817 hasConcept C121332964 @default.
- W4220996817 hasConcept C154945302 @default.
- W4220996817 hasConcept C32891209 @default.
- W4220996817 hasConcept C41008148 @default.
- W4220996817 hasConcept C43571822 @default.
- W4220996817 hasConcept C62520636 @default.
- W4220996817 hasConceptScore W4220996817C120665830 @default.
- W4220996817 hasConceptScore W4220996817C121332964 @default.
- W4220996817 hasConceptScore W4220996817C154945302 @default.
- W4220996817 hasConceptScore W4220996817C32891209 @default.
- W4220996817 hasConceptScore W4220996817C41008148 @default.
- W4220996817 hasConceptScore W4220996817C43571822 @default.
- W4220996817 hasConceptScore W4220996817C62520636 @default.
- W4220996817 hasLocation W42209968171 @default.
- W4220996817 hasOpenAccess W4220996817 @default.
- W4220996817 hasPrimaryLocation W42209968171 @default.
- W4220996817 hasRelatedWork W2048947800 @default.
- W4220996817 hasRelatedWork W2057696611 @default.
- W4220996817 hasRelatedWork W2269037450 @default.
- W4220996817 hasRelatedWork W2383325978 @default.
- W4220996817 hasRelatedWork W2483455883 @default.
- W4220996817 hasRelatedWork W2886229149 @default.
- W4220996817 hasRelatedWork W3007819143 @default.
- W4220996817 hasRelatedWork W3100064493 @default.
- W4220996817 hasRelatedWork W3107474891 @default.
- W4220996817 hasRelatedWork W2182084563 @default.
- W4220996817 isParatext "false" @default.
- W4220996817 isRetracted "false" @default.
- W4220996817 workType "article" @default.