Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220996858> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4220996858 endingPage "106876" @default.
- W4220996858 startingPage "106876" @default.
- W4220996858 abstract "Predicting litter performance in lactating sows is an essential step towards the development of decision support systems for precision feeding in lactating sows. Numerous factors affecting litter performance have been described in literature. However, predictive models working on-farm in real time are not available. The main objectives of this research was to (i) explore 4 different machine learning strategies, and (ii) identify the best supervised learning algorithm in order to obtain reliable predictions of litter performance. This study was carried out with data obtained from 6 experimental farms over the last 20 years. Algorithms were trained to predict the litter weight at weaning using a set of 4 numeric and 3 categorical features, and a method for predicting secondary litter performance and nutrient output in milk from the predicted litter weight at weaning was evaluated. To evaluate the reliability of predictions within each farm, the mean error per farm (MEf) and the mean absolute percentage error per farm (MAPEf) were computed. The best performance for the prediction of litter weight at weaning was obtained with an ensemble algorithm with farm-level training and testing (MEf = −0.14 kg; MAPEf = 9.01%), but performance with simple linear regression was very close (MAPEf = 9.30%). Learning across all farms only achieved comparable results with the neural networks algorithm, but at higher computational costs. The method for predicting secondary litter performance and nutrient output from the predictions of litter weight at weaning reveals that the MEf remains close to 0, and that the MAPEf only increases by a few percentage points. This study confirms the effect of numerous factors known in the literature to affect litter performance, such as litter size and parity of sows, but also revealed huge variations between farms. According to this study, reliable predictions could be obtained with interpretable supervised algorithms trained at farm level, with features that can be easily measured on-farm. This study thus shows that on-farm data are necessary to accurately train models and make reliable predictions at farm level. These predictions could be used by decision support systems in order to develop precision feeding approaches in lactating sows." @default.
- W4220996858 created "2022-04-03" @default.
- W4220996858 creator A5023025601 @default.
- W4220996858 creator A5068273161 @default.
- W4220996858 creator A5079590045 @default.
- W4220996858 date "2022-05-01" @default.
- W4220996858 modified "2023-10-02" @default.
- W4220996858 title "Prediction of litter performance in lactating sows using machine learning, for precision livestock farming" @default.
- W4220996858 cites W2005192175 @default.
- W4220996858 cites W2005755879 @default.
- W4220996858 cites W2015678706 @default.
- W4220996858 cites W2022018238 @default.
- W4220996858 cites W2028188489 @default.
- W4220996858 cites W2128934865 @default.
- W4220996858 cites W2181523240 @default.
- W4220996858 cites W2401469438 @default.
- W4220996858 cites W240944110 @default.
- W4220996858 cites W2495383307 @default.
- W4220996858 cites W2508756106 @default.
- W4220996858 cites W2584728594 @default.
- W4220996858 cites W2594412815 @default.
- W4220996858 cites W2719282 @default.
- W4220996858 cites W2946802905 @default.
- W4220996858 cites W3000393559 @default.
- W4220996858 cites W3041773869 @default.
- W4220996858 cites W63617823 @default.
- W4220996858 doi "https://doi.org/10.1016/j.compag.2022.106876" @default.
- W4220996858 hasPublicationYear "2022" @default.
- W4220996858 type Work @default.
- W4220996858 citedByCount "6" @default.
- W4220996858 countsByYear W42209968582022 @default.
- W4220996858 countsByYear W42209968582023 @default.
- W4220996858 crossrefType "journal-article" @default.
- W4220996858 hasAuthorship W4220996858A5023025601 @default.
- W4220996858 hasAuthorship W4220996858A5068273161 @default.
- W4220996858 hasAuthorship W4220996858A5079590045 @default.
- W4220996858 hasBestOaLocation W42209968581 @default.
- W4220996858 hasConcept C105795698 @default.
- W4220996858 hasConcept C112964050 @default.
- W4220996858 hasConcept C11413529 @default.
- W4220996858 hasConcept C119857082 @default.
- W4220996858 hasConcept C139945424 @default.
- W4220996858 hasConcept C140793950 @default.
- W4220996858 hasConcept C154945302 @default.
- W4220996858 hasConcept C18903297 @default.
- W4220996858 hasConcept C2779429622 @default.
- W4220996858 hasConcept C2780655333 @default.
- W4220996858 hasConcept C33923547 @default.
- W4220996858 hasConcept C41008148 @default.
- W4220996858 hasConcept C86803240 @default.
- W4220996858 hasConceptScore W4220996858C105795698 @default.
- W4220996858 hasConceptScore W4220996858C112964050 @default.
- W4220996858 hasConceptScore W4220996858C11413529 @default.
- W4220996858 hasConceptScore W4220996858C119857082 @default.
- W4220996858 hasConceptScore W4220996858C139945424 @default.
- W4220996858 hasConceptScore W4220996858C140793950 @default.
- W4220996858 hasConceptScore W4220996858C154945302 @default.
- W4220996858 hasConceptScore W4220996858C18903297 @default.
- W4220996858 hasConceptScore W4220996858C2779429622 @default.
- W4220996858 hasConceptScore W4220996858C2780655333 @default.
- W4220996858 hasConceptScore W4220996858C33923547 @default.
- W4220996858 hasConceptScore W4220996858C41008148 @default.
- W4220996858 hasConceptScore W4220996858C86803240 @default.
- W4220996858 hasFunder F4320320883 @default.
- W4220996858 hasFunder F4320334322 @default.
- W4220996858 hasLocation W42209968581 @default.
- W4220996858 hasLocation W42209968582 @default.
- W4220996858 hasOpenAccess W4220996858 @default.
- W4220996858 hasPrimaryLocation W42209968581 @default.
- W4220996858 hasRelatedWork W2100452693 @default.
- W4220996858 hasRelatedWork W2109616398 @default.
- W4220996858 hasRelatedWork W2159701397 @default.
- W4220996858 hasRelatedWork W2418083296 @default.
- W4220996858 hasRelatedWork W2563044678 @default.
- W4220996858 hasRelatedWork W2788119628 @default.
- W4220996858 hasRelatedWork W4223579811 @default.
- W4220996858 hasRelatedWork W4235670355 @default.
- W4220996858 hasRelatedWork W4290268722 @default.
- W4220996858 hasRelatedWork W2518691719 @default.
- W4220996858 hasVolume "196" @default.
- W4220996858 isParatext "false" @default.
- W4220996858 isRetracted "false" @default.
- W4220996858 workType "article" @default.