Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220997345> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4220997345 endingPage "3130" @default.
- W4220997345 startingPage "3130" @default.
- W4220997345 abstract "Machine reading comprehension (MRC) of text data is a challenging task in Natural Language Processing (NLP), with a lot of ongoing research fueled by the release of the Stanford Question Answering Dataset (SQuAD) and Conversational Question Answering (CoQA). It is considered to be an effort to teach computers how to “understand” a text, and then to be able to answer questions about it using deep learning. However, until now, large-scale training on private text data and knowledge sharing has been missing for this NLP task. Hence, we present FedQAS, a privacy-preserving machine reading system capable of leveraging large-scale private data without the need to pool those datasets in a central location. The proposed approach combines transformer models and federated learning technologies. The system is developed using the FEDn framework and deployed as a proof-of-concept alliance initiative. FedQAS is flexible, language-agnostic, and allows intuitive participation and execution of local model training. In addition, we present the architecture and implementation of the system, as well as provide a reference evaluation based on the SQuAD dataset, to showcase how it overcomes data privacy issues and enables knowledge sharing between alliance members in a Federated learning setting." @default.
- W4220997345 created "2022-04-03" @default.
- W4220997345 creator A5049163000 @default.
- W4220997345 creator A5049765702 @default.
- W4220997345 creator A5050385229 @default.
- W4220997345 creator A5065946530 @default.
- W4220997345 date "2022-03-18" @default.
- W4220997345 modified "2023-10-05" @default.
- W4220997345 title "FedQAS: Privacy-Aware Machine Reading Comprehension with Federated Learning" @default.
- W4220997345 cites W2033047024 @default.
- W4220997345 cites W2044566332 @default.
- W4220997345 cites W2121300346 @default.
- W4220997345 cites W2134167315 @default.
- W4220997345 cites W2136114025 @default.
- W4220997345 cites W2159024459 @default.
- W4220997345 cites W2557764419 @default.
- W4220997345 cites W2593833795 @default.
- W4220997345 cites W2768694333 @default.
- W4220997345 cites W2962739339 @default.
- W4220997345 cites W2963323070 @default.
- W4220997345 cites W2963341956 @default.
- W4220997345 cites W2963693643 @default.
- W4220997345 cites W2963748441 @default.
- W4220997345 cites W2964223283 @default.
- W4220997345 cites W2998230451 @default.
- W4220997345 cites W2998665041 @default.
- W4220997345 cites W3098057198 @default.
- W4220997345 doi "https://doi.org/10.3390/app12063130" @default.
- W4220997345 hasPublicationYear "2022" @default.
- W4220997345 type Work @default.
- W4220997345 citedByCount "3" @default.
- W4220997345 countsByYear W42209973452022 @default.
- W4220997345 countsByYear W42209973452023 @default.
- W4220997345 crossrefType "journal-article" @default.
- W4220997345 hasAuthorship W4220997345A5049163000 @default.
- W4220997345 hasAuthorship W4220997345A5049765702 @default.
- W4220997345 hasAuthorship W4220997345A5050385229 @default.
- W4220997345 hasAuthorship W4220997345A5065946530 @default.
- W4220997345 hasBestOaLocation W42209973451 @default.
- W4220997345 hasConcept C123657996 @default.
- W4220997345 hasConcept C136764020 @default.
- W4220997345 hasConcept C142362112 @default.
- W4220997345 hasConcept C153349607 @default.
- W4220997345 hasConcept C154945302 @default.
- W4220997345 hasConcept C162324750 @default.
- W4220997345 hasConcept C17744445 @default.
- W4220997345 hasConcept C187736073 @default.
- W4220997345 hasConcept C199539241 @default.
- W4220997345 hasConcept C204321447 @default.
- W4220997345 hasConcept C2778431023 @default.
- W4220997345 hasConcept C2778780117 @default.
- W4220997345 hasConcept C2780451532 @default.
- W4220997345 hasConcept C41008148 @default.
- W4220997345 hasConcept C44291984 @default.
- W4220997345 hasConcept C554936623 @default.
- W4220997345 hasConceptScore W4220997345C123657996 @default.
- W4220997345 hasConceptScore W4220997345C136764020 @default.
- W4220997345 hasConceptScore W4220997345C142362112 @default.
- W4220997345 hasConceptScore W4220997345C153349607 @default.
- W4220997345 hasConceptScore W4220997345C154945302 @default.
- W4220997345 hasConceptScore W4220997345C162324750 @default.
- W4220997345 hasConceptScore W4220997345C17744445 @default.
- W4220997345 hasConceptScore W4220997345C187736073 @default.
- W4220997345 hasConceptScore W4220997345C199539241 @default.
- W4220997345 hasConceptScore W4220997345C204321447 @default.
- W4220997345 hasConceptScore W4220997345C2778431023 @default.
- W4220997345 hasConceptScore W4220997345C2778780117 @default.
- W4220997345 hasConceptScore W4220997345C2780451532 @default.
- W4220997345 hasConceptScore W4220997345C41008148 @default.
- W4220997345 hasConceptScore W4220997345C44291984 @default.
- W4220997345 hasConceptScore W4220997345C554936623 @default.
- W4220997345 hasIssue "6" @default.
- W4220997345 hasLocation W42209973451 @default.
- W4220997345 hasLocation W42209973452 @default.
- W4220997345 hasLocation W42209973453 @default.
- W4220997345 hasLocation W42209973454 @default.
- W4220997345 hasOpenAccess W4220997345 @default.
- W4220997345 hasPrimaryLocation W42209973451 @default.
- W4220997345 hasRelatedWork W1560657467 @default.
- W4220997345 hasRelatedWork W207304934 @default.
- W4220997345 hasRelatedWork W2153711059 @default.
- W4220997345 hasRelatedWork W2354866896 @default.
- W4220997345 hasRelatedWork W2387635965 @default.
- W4220997345 hasRelatedWork W2748952813 @default.
- W4220997345 hasRelatedWork W2889603307 @default.
- W4220997345 hasRelatedWork W2970044932 @default.
- W4220997345 hasRelatedWork W4377703168 @default.
- W4220997345 hasRelatedWork W4382705747 @default.
- W4220997345 hasVolume "12" @default.
- W4220997345 isParatext "false" @default.
- W4220997345 isRetracted "false" @default.
- W4220997345 workType "article" @default.