Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220999924> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4220999924 abstract "Age-related macular degeneration (AMD) is one of the most common reasons for blindness in the world today. The most common treatment for wet AMD is the intravitreal injections for inhibiting vascular-endothelial-derived growth factor (VEGF). This treatment usually involves multiple injections and thus multiple clinic visits, which not only causes increased cost on national health services but also causes exposure to the hospital environment, which is sometimes high risk considering current COVID crisis. The treatment, in spite of the above concerns, is usually effective. However, in some cases, either the medicine fails to produce the anticipated favourable outcome, resulting in waste of time, medication, efforts, and above all, psychological distress to the patients. Hence, early predictability of anatomical as well as functional effectiveness of the treatment appears to be a very desirable capability to have.A machine learning approach using adaptive neuro-fuzzy inference system (ANFIS) of two-sample prediction model has been presented that requires only the baseline measurements and changes in visual acuity (VA) as well as macular thickness (MAC) after four months of treatment to estimate the values of VA and MAC at 8 and 12 months. In contrast to most of the AI techniques, ANFIS approach has shown the capability of the algorithm to work with very small dataset as well, which makes it a perfect candidate for the presented solution.The presented model has shown to have a very high accuracy (> 92%) and works in near-real-time scenarios. It has been converted into a smart phone App, OphnosisAMD, for convenient usage. With this App, the clinician can visualize the progression of the patient for a specific treatment and can decide on continuing or changing the treatment accordingly. The complete AI engine developed with the ANFIS algorithm is localized to the phone through the App, implying that there is no need for internet or cloud connectivity for this App to function. This makes it ideal for remote usage, especially under the current COVID scenarios.With a smart AI-based App on their fingertips, the presented system provides ample opportunity to the doctors to make a better decision based on the estimated progression, if the same drug is continued with (good/fair prognosis) or alternate treatment should be sought (bad prognosis). From a functional point of view, a prediction algorithm is triggered through simple entry of the relevant parameters (baseline and 4 months only). No internet/cloud connectivity is needed since the algorithm and the trained network are fully embedded in the App locally. Hence, using the App in remote and/or non-connected isolated areas is possible, especially in the secluded patients during the COVID scenarios." @default.
- W4220999924 created "2022-04-03" @default.
- W4220999924 creator A5039299960 @default.
- W4220999924 creator A5052489944 @default.
- W4220999924 creator A5065716282 @default.
- W4220999924 creator A5074500175 @default.
- W4220999924 date "2022-01-30" @default.
- W4220999924 modified "2023-09-25" @default.
- W4220999924 title "Smart AMD prognosis through cellphone: an innovative localized AI-based prediction system for anti-VEGF treatment prognosis in nonagenarians and centenarians" @default.
- W4220999924 cites W1481978003 @default.
- W4220999924 cites W1672520936 @default.
- W4220999924 cites W1972305015 @default.
- W4220999924 cites W1980632047 @default.
- W4220999924 cites W2004824863 @default.
- W4220999924 cites W2019207321 @default.
- W4220999924 cites W2026216391 @default.
- W4220999924 cites W2049825589 @default.
- W4220999924 cites W2059547624 @default.
- W4220999924 cites W2088338269 @default.
- W4220999924 cites W2136381651 @default.
- W4220999924 cites W2146673937 @default.
- W4220999924 cites W2171962482 @default.
- W4220999924 cites W2417878218 @default.
- W4220999924 cites W2734721636 @default.
- W4220999924 cites W2737562804 @default.
- W4220999924 cites W2758333670 @default.
- W4220999924 cites W2760535917 @default.
- W4220999924 cites W2782259231 @default.
- W4220999924 cites W2796809202 @default.
- W4220999924 cites W2800722845 @default.
- W4220999924 cites W2883841364 @default.
- W4220999924 cites W2908205872 @default.
- W4220999924 cites W2912072952 @default.
- W4220999924 cites W3045382801 @default.
- W4220999924 doi "https://doi.org/10.1007/s10792-021-02171-8" @default.
- W4220999924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35094227" @default.
- W4220999924 hasPublicationYear "2022" @default.
- W4220999924 type Work @default.
- W4220999924 citedByCount "1" @default.
- W4220999924 countsByYear W42209999242023 @default.
- W4220999924 crossrefType "journal-article" @default.
- W4220999924 hasAuthorship W4220999924A5039299960 @default.
- W4220999924 hasAuthorship W4220999924A5052489944 @default.
- W4220999924 hasAuthorship W4220999924A5065716282 @default.
- W4220999924 hasAuthorship W4220999924A5074500175 @default.
- W4220999924 hasBestOaLocation W42209999242 @default.
- W4220999924 hasConcept C118487528 @default.
- W4220999924 hasConcept C119767625 @default.
- W4220999924 hasConcept C119857082 @default.
- W4220999924 hasConcept C126322002 @default.
- W4220999924 hasConcept C154945302 @default.
- W4220999924 hasConcept C186108316 @default.
- W4220999924 hasConcept C195975749 @default.
- W4220999924 hasConcept C2776403814 @default.
- W4220999924 hasConcept C2776694085 @default.
- W4220999924 hasConcept C2777802072 @default.
- W4220999924 hasConcept C2778257484 @default.
- W4220999924 hasConcept C2780929884 @default.
- W4220999924 hasConcept C2987376176 @default.
- W4220999924 hasConcept C2988105877 @default.
- W4220999924 hasConcept C41008148 @default.
- W4220999924 hasConcept C58166 @default.
- W4220999924 hasConcept C71924100 @default.
- W4220999924 hasConceptScore W4220999924C118487528 @default.
- W4220999924 hasConceptScore W4220999924C119767625 @default.
- W4220999924 hasConceptScore W4220999924C119857082 @default.
- W4220999924 hasConceptScore W4220999924C126322002 @default.
- W4220999924 hasConceptScore W4220999924C154945302 @default.
- W4220999924 hasConceptScore W4220999924C186108316 @default.
- W4220999924 hasConceptScore W4220999924C195975749 @default.
- W4220999924 hasConceptScore W4220999924C2776403814 @default.
- W4220999924 hasConceptScore W4220999924C2776694085 @default.
- W4220999924 hasConceptScore W4220999924C2777802072 @default.
- W4220999924 hasConceptScore W4220999924C2778257484 @default.
- W4220999924 hasConceptScore W4220999924C2780929884 @default.
- W4220999924 hasConceptScore W4220999924C2987376176 @default.
- W4220999924 hasConceptScore W4220999924C2988105877 @default.
- W4220999924 hasConceptScore W4220999924C41008148 @default.
- W4220999924 hasConceptScore W4220999924C58166 @default.
- W4220999924 hasConceptScore W4220999924C71924100 @default.
- W4220999924 hasLocation W42209999241 @default.
- W4220999924 hasLocation W42209999242 @default.
- W4220999924 hasLocation W42209999243 @default.
- W4220999924 hasOpenAccess W4220999924 @default.
- W4220999924 hasPrimaryLocation W42209999241 @default.
- W4220999924 hasRelatedWork W1991202595 @default.
- W4220999924 hasRelatedWork W1995044506 @default.
- W4220999924 hasRelatedWork W2032186571 @default.
- W4220999924 hasRelatedWork W2050312349 @default.
- W4220999924 hasRelatedWork W2124491627 @default.
- W4220999924 hasRelatedWork W2218676812 @default.
- W4220999924 hasRelatedWork W3161526825 @default.
- W4220999924 hasRelatedWork W4205134797 @default.
- W4220999924 hasRelatedWork W4220999924 @default.
- W4220999924 hasRelatedWork W4290610150 @default.
- W4220999924 isParatext "false" @default.
- W4220999924 isRetracted "false" @default.
- W4220999924 workType "article" @default.