Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221003407> ?p ?o ?g. }
- W4221003407 abstract "Abstract Cancer genome sequencing enables accurate classification of tumours and tumour sub-types. However, prediction performance is still limited using exome-only sequencing and for tumor types with low somatic mutation burden such as many pediatric tumours. Moreover, the ability to leverage deep representation learning in discovery of tumour entities remains unknown. We introduce here Mutation-Attention (MuAt), a deep neural network to learn representations of simple and complex somatic alterations for prediction of tumour types and subtypes. MuAt achieved prediction accuracy of 89% for whole genomes (24 tumour types) and 64% for whole exomes (20 types), and a top-5 accuracy of 97% and 90%, respectively. Tumour representations learnt by MuAt included tumour entities such as acral melanoma, SHH-activated medulloblastoma, SPOP -associated prostate cancer, microsatellite instability, and MUTYH -associated pancreatic endocrine tumours although these tumour subtypes and subgroups were not used as training labels. Integrated representations of somatic alterations hold significant potential to drive discovery of novel tumour entities and clinical application." @default.
- W4221003407 created "2022-04-03" @default.
- W4221003407 creator A5002670402 @default.
- W4221003407 creator A5004439161 @default.
- W4221003407 creator A5048456384 @default.
- W4221003407 creator A5071136927 @default.
- W4221003407 creator A5091002491 @default.
- W4221003407 date "2022-03-17" @default.
- W4221003407 modified "2023-09-26" @default.
- W4221003407 title "Mutation-Attention (MuAt): deep representation learning of somatic mutations for tumour typing and subtyping" @default.
- W4221003407 cites W1565385417 @default.
- W4221003407 cites W1803857749 @default.
- W4221003407 cites W1898603749 @default.
- W4221003407 cites W1940241680 @default.
- W4221003407 cites W1989456683 @default.
- W4221003407 cites W1994847090 @default.
- W4221003407 cites W2062455051 @default.
- W4221003407 cites W2076774554 @default.
- W4221003407 cites W2086239585 @default.
- W4221003407 cites W2118124054 @default.
- W4221003407 cites W2143079975 @default.
- W4221003407 cites W2152061559 @default.
- W4221003407 cites W2160713553 @default.
- W4221003407 cites W2197921176 @default.
- W4221003407 cites W2266041843 @default.
- W4221003407 cites W2515164523 @default.
- W4221003407 cites W2589112207 @default.
- W4221003407 cites W2606616407 @default.
- W4221003407 cites W2612428976 @default.
- W4221003407 cites W2737542366 @default.
- W4221003407 cites W2768211711 @default.
- W4221003407 cites W2772677509 @default.
- W4221003407 cites W2794804602 @default.
- W4221003407 cites W2796153844 @default.
- W4221003407 cites W2810664395 @default.
- W4221003407 cites W2889326414 @default.
- W4221003407 cites W2906107882 @default.
- W4221003407 cites W2920848372 @default.
- W4221003407 cites W2924903871 @default.
- W4221003407 cites W2935087249 @default.
- W4221003407 cites W2937319208 @default.
- W4221003407 cites W2954688009 @default.
- W4221003407 cites W2971959078 @default.
- W4221003407 cites W2981548686 @default.
- W4221003407 cites W2985795188 @default.
- W4221003407 cites W3004480399 @default.
- W4221003407 cites W3004647847 @default.
- W4221003407 cites W3005218670 @default.
- W4221003407 cites W3006132030 @default.
- W4221003407 cites W3006500278 @default.
- W4221003407 cites W3023476794 @default.
- W4221003407 cites W3024912912 @default.
- W4221003407 cites W3027051073 @default.
- W4221003407 cites W3028329270 @default.
- W4221003407 cites W3043670726 @default.
- W4221003407 cites W3110528877 @default.
- W4221003407 cites W3130672622 @default.
- W4221003407 cites W3176506086 @default.
- W4221003407 cites W3213145260 @default.
- W4221003407 cites W4200172902 @default.
- W4221003407 cites W4225752857 @default.
- W4221003407 cites W4248493569 @default.
- W4221003407 doi "https://doi.org/10.1101/2022.03.15.483816" @default.
- W4221003407 hasPublicationYear "2022" @default.
- W4221003407 type Work @default.
- W4221003407 citedByCount "1" @default.
- W4221003407 countsByYear W42210034072020 @default.
- W4221003407 crossrefType "posted-content" @default.
- W4221003407 hasAuthorship W4221003407A5002670402 @default.
- W4221003407 hasAuthorship W4221003407A5004439161 @default.
- W4221003407 hasAuthorship W4221003407A5048456384 @default.
- W4221003407 hasAuthorship W4221003407A5071136927 @default.
- W4221003407 hasAuthorship W4221003407A5091002491 @default.
- W4221003407 hasBestOaLocation W42210034071 @default.
- W4221003407 hasConcept C104317684 @default.
- W4221003407 hasConcept C10590036 @default.
- W4221003407 hasConcept C109825262 @default.
- W4221003407 hasConcept C134305767 @default.
- W4221003407 hasConcept C13514818 @default.
- W4221003407 hasConcept C16671776 @default.
- W4221003407 hasConcept C501734568 @default.
- W4221003407 hasConcept C54355233 @default.
- W4221003407 hasConcept C70721500 @default.
- W4221003407 hasConcept C86803240 @default.
- W4221003407 hasConceptScore W4221003407C104317684 @default.
- W4221003407 hasConceptScore W4221003407C10590036 @default.
- W4221003407 hasConceptScore W4221003407C109825262 @default.
- W4221003407 hasConceptScore W4221003407C134305767 @default.
- W4221003407 hasConceptScore W4221003407C13514818 @default.
- W4221003407 hasConceptScore W4221003407C16671776 @default.
- W4221003407 hasConceptScore W4221003407C501734568 @default.
- W4221003407 hasConceptScore W4221003407C54355233 @default.
- W4221003407 hasConceptScore W4221003407C70721500 @default.
- W4221003407 hasConceptScore W4221003407C86803240 @default.
- W4221003407 hasLocation W42210034071 @default.
- W4221003407 hasOpenAccess W4221003407 @default.
- W4221003407 hasPrimaryLocation W42210034071 @default.
- W4221003407 hasRelatedWork W1480540175 @default.
- W4221003407 hasRelatedWork W2054836365 @default.
- W4221003407 hasRelatedWork W2282892918 @default.