Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221004047> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4221004047 endingPage "17" @default.
- W4221004047 startingPage "1" @default.
- W4221004047 abstract "IEEE 802.15.4e time-slotted channel hopping (TSCH) is one of the most reliable resources of the Industrial Internet of Things (IIoT). TSCH operates on the slot-frame structure consisting of multiple channel-offsets and multiple slot-offsets. It is gaining acceptance due to its simple architecture and consume low power in industrial applications. The performance of TSCH is mainly dominated by the media access control (MAC) mechanism, which covers the refitment, enumeration, composition, and data transmission. However, in many cases, the data transmission schedules are not accurately prescribed. Therefore, most researchers are trying to define many pragmatic scenarios of scheduling. Their fundamental approach is to schedule TSCH network in a centralized way while framing scheduling based on network performance such as throughput and delay. In this work, a deep learning (DL)-based scheme has been proposed. TSCH network schedules for links to cell assignment of a slot-frame can be constructed as a maximum edge weighted bipartite matching approach. In this paper, we design bipartite edge weight to be composed of throughput and delay, and we use the Hungarian algorithm for proper cell assignment. With the Hungarian scheduling algorithm, we generate the training data and train a deep neural network (DNN) accordingly. In the simulation, we consider a simple TSCH network with 5 nodes where 12 links are formulated, and we consider 16 cells for the link assignment. The simulation results show that the proposed deep learning-based scheduling scheme can provide performance similar to the Hungarian algorithm-based scheduling scheme with above 90% accuracy and nearly 80% execution time reduction." @default.
- W4221004047 created "2022-04-03" @default.
- W4221004047 creator A5013537933 @default.
- W4221004047 creator A5082206251 @default.
- W4221004047 creator A5090467244 @default.
- W4221004047 date "2022-03-18" @default.
- W4221004047 modified "2023-10-15" @default.
- W4221004047 title "Deep Learning-Based Scheduling Scheme for IEEE 802.15.4e TSCH Network" @default.
- W4221004047 cites W1804599610 @default.
- W4221004047 cites W1906224694 @default.
- W4221004047 cites W1970701130 @default.
- W4221004047 cites W2080296008 @default.
- W4221004047 cites W2081071884 @default.
- W4221004047 cites W2094000142 @default.
- W4221004047 cites W2154328533 @default.
- W4221004047 cites W2401971606 @default.
- W4221004047 cites W2520899830 @default.
- W4221004047 cites W2567031948 @default.
- W4221004047 cites W2727936850 @default.
- W4221004047 cites W2750582223 @default.
- W4221004047 cites W2769052255 @default.
- W4221004047 cites W2773809822 @default.
- W4221004047 cites W2775134575 @default.
- W4221004047 cites W2786361328 @default.
- W4221004047 cites W2787215260 @default.
- W4221004047 cites W2797354484 @default.
- W4221004047 cites W2797462110 @default.
- W4221004047 cites W2804075771 @default.
- W4221004047 cites W2811266402 @default.
- W4221004047 cites W2885238370 @default.
- W4221004047 cites W2890391580 @default.
- W4221004047 cites W2895566335 @default.
- W4221004047 cites W2898186241 @default.
- W4221004047 cites W2901096892 @default.
- W4221004047 cites W2906578628 @default.
- W4221004047 cites W2963020121 @default.
- W4221004047 cites W2963079995 @default.
- W4221004047 cites W2963504849 @default.
- W4221004047 cites W2963889719 @default.
- W4221004047 cites W2966020011 @default.
- W4221004047 cites W2970285786 @default.
- W4221004047 cites W2972609931 @default.
- W4221004047 cites W2972935812 @default.
- W4221004047 cites W2998578058 @default.
- W4221004047 cites W3007787909 @default.
- W4221004047 cites W3032674758 @default.
- W4221004047 cites W3038405775 @default.
- W4221004047 cites W3040348674 @default.
- W4221004047 cites W3044134118 @default.
- W4221004047 cites W3048657120 @default.
- W4221004047 cites W3208256233 @default.
- W4221004047 cites W4200314515 @default.
- W4221004047 cites W4292692470 @default.
- W4221004047 doi "https://doi.org/10.1155/2022/8992478" @default.
- W4221004047 hasPublicationYear "2022" @default.
- W4221004047 type Work @default.
- W4221004047 citedByCount "1" @default.
- W4221004047 crossrefType "journal-article" @default.
- W4221004047 hasAuthorship W4221004047A5013537933 @default.
- W4221004047 hasAuthorship W4221004047A5082206251 @default.
- W4221004047 hasAuthorship W4221004047A5090467244 @default.
- W4221004047 hasBestOaLocation W42210040471 @default.
- W4221004047 hasConcept C111919701 @default.
- W4221004047 hasConcept C120314980 @default.
- W4221004047 hasConcept C126255220 @default.
- W4221004047 hasConcept C138236772 @default.
- W4221004047 hasConcept C206729178 @default.
- W4221004047 hasConcept C31258907 @default.
- W4221004047 hasConcept C33923547 @default.
- W4221004047 hasConcept C41008148 @default.
- W4221004047 hasConcept C79974875 @default.
- W4221004047 hasConceptScore W4221004047C111919701 @default.
- W4221004047 hasConceptScore W4221004047C120314980 @default.
- W4221004047 hasConceptScore W4221004047C126255220 @default.
- W4221004047 hasConceptScore W4221004047C138236772 @default.
- W4221004047 hasConceptScore W4221004047C206729178 @default.
- W4221004047 hasConceptScore W4221004047C31258907 @default.
- W4221004047 hasConceptScore W4221004047C33923547 @default.
- W4221004047 hasConceptScore W4221004047C41008148 @default.
- W4221004047 hasConceptScore W4221004047C79974875 @default.
- W4221004047 hasFunder F4320311687 @default.
- W4221004047 hasLocation W42210040471 @default.
- W4221004047 hasOpenAccess W4221004047 @default.
- W4221004047 hasPrimaryLocation W42210040471 @default.
- W4221004047 hasRelatedWork W1882733036 @default.
- W4221004047 hasRelatedWork W1992741870 @default.
- W4221004047 hasRelatedWork W2130966263 @default.
- W4221004047 hasRelatedWork W2160425906 @default.
- W4221004047 hasRelatedWork W2546696010 @default.
- W4221004047 hasRelatedWork W2979596628 @default.
- W4221004047 hasRelatedWork W3005476708 @default.
- W4221004047 hasRelatedWork W3047608784 @default.
- W4221004047 hasRelatedWork W3088897221 @default.
- W4221004047 hasRelatedWork W4321123200 @default.
- W4221004047 hasVolume "2022" @default.
- W4221004047 isParatext "false" @default.
- W4221004047 isRetracted "false" @default.
- W4221004047 workType "article" @default.