Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221004703> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4221004703 endingPage "26930" @default.
- W4221004703 startingPage "26920" @default.
- W4221004703 abstract "Multivariate statistical process control (MSPC) is a technique for detecting anomalies by monitoring several quality characteristics simultaneously. For the MSPC problem, the Hotelling’s <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T^{2}$ </tex-math></inline-formula> control chart has been widely used as a typical method. Recently, researchers have converted the MSPC problem into a classification problem such as the artificial contrast (AC) and the one-class classification (OCC). Previous studies have shown that these methods outperform the Hotelling’s <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T^{2}$ </tex-math></inline-formula> chart when the data do not follow a multivariate normal distribution. However, unless the size of the process data is enough for the AC and the OCC, they cannot work properly. To tackle this problem, in this paper, we propose a novel anomaly detection (AD) approach. The proposed method adopts the least square generative adversarial network (LS-GAN) to estimate the probability distribution of the training data. It generates new training samples from the learned probability distribution. The classifiers such as the random forests (RF) and the one-class support vector machines (OC-SVM) are considered for tackling the AC and the OCC respectively. The numerical experiments demonstrate that the proposed approach outperforms the existing methods in terms of the area under the receiver operating characteristic (ROC) curve (AUC)." @default.
- W4221004703 created "2022-04-03" @default.
- W4221004703 creator A5024011922 @default.
- W4221004703 creator A5050819523 @default.
- W4221004703 creator A5073790847 @default.
- W4221004703 date "2022-01-01" @default.
- W4221004703 modified "2023-09-30" @default.
- W4221004703 title "Least Squares Generative Adversarial Networks-Based Anomaly Detection" @default.
- W4221004703 cites W1963729448 @default.
- W4221004703 cites W1967460951 @default.
- W4221004703 cites W1970088130 @default.
- W4221004703 cites W1997398853 @default.
- W4221004703 cites W1998188520 @default.
- W4221004703 cites W2001595608 @default.
- W4221004703 cites W2007713979 @default.
- W4221004703 cites W2074399002 @default.
- W4221004703 cites W2132870739 @default.
- W4221004703 cites W2134490011 @default.
- W4221004703 cites W2142362556 @default.
- W4221004703 cites W2155653793 @default.
- W4221004703 cites W2162695109 @default.
- W4221004703 cites W2177976272 @default.
- W4221004703 cites W2593414223 @default.
- W4221004703 cites W2756182389 @default.
- W4221004703 cites W2899726877 @default.
- W4221004703 cites W2911200746 @default.
- W4221004703 cites W2911964244 @default.
- W4221004703 cites W3106257921 @default.
- W4221004703 cites W3162096064 @default.
- W4221004703 cites W4239510810 @default.
- W4221004703 cites W4299345493 @default.
- W4221004703 doi "https://doi.org/10.1109/access.2022.3158343" @default.
- W4221004703 hasPublicationYear "2022" @default.
- W4221004703 type Work @default.
- W4221004703 citedByCount "3" @default.
- W4221004703 countsByYear W42210047032022 @default.
- W4221004703 countsByYear W42210047032023 @default.
- W4221004703 crossrefType "journal-article" @default.
- W4221004703 hasAuthorship W4221004703A5024011922 @default.
- W4221004703 hasAuthorship W4221004703A5050819523 @default.
- W4221004703 hasAuthorship W4221004703A5073790847 @default.
- W4221004703 hasBestOaLocation W42210047031 @default.
- W4221004703 hasConcept C11413529 @default.
- W4221004703 hasConcept C119857082 @default.
- W4221004703 hasConcept C12267149 @default.
- W4221004703 hasConcept C124101348 @default.
- W4221004703 hasConcept C153180895 @default.
- W4221004703 hasConcept C154945302 @default.
- W4221004703 hasConcept C2777212361 @default.
- W4221004703 hasConcept C33923547 @default.
- W4221004703 hasConcept C41008148 @default.
- W4221004703 hasConcept C45357846 @default.
- W4221004703 hasConcept C739882 @default.
- W4221004703 hasConcept C94375191 @default.
- W4221004703 hasConceptScore W4221004703C11413529 @default.
- W4221004703 hasConceptScore W4221004703C119857082 @default.
- W4221004703 hasConceptScore W4221004703C12267149 @default.
- W4221004703 hasConceptScore W4221004703C124101348 @default.
- W4221004703 hasConceptScore W4221004703C153180895 @default.
- W4221004703 hasConceptScore W4221004703C154945302 @default.
- W4221004703 hasConceptScore W4221004703C2777212361 @default.
- W4221004703 hasConceptScore W4221004703C33923547 @default.
- W4221004703 hasConceptScore W4221004703C41008148 @default.
- W4221004703 hasConceptScore W4221004703C45357846 @default.
- W4221004703 hasConceptScore W4221004703C739882 @default.
- W4221004703 hasConceptScore W4221004703C94375191 @default.
- W4221004703 hasFunder F4320321210 @default.
- W4221004703 hasLocation W42210047031 @default.
- W4221004703 hasLocation W42210047032 @default.
- W4221004703 hasOpenAccess W4221004703 @default.
- W4221004703 hasPrimaryLocation W42210047031 @default.
- W4221004703 hasRelatedWork W2041399278 @default.
- W4221004703 hasRelatedWork W2056016498 @default.
- W4221004703 hasRelatedWork W2076520961 @default.
- W4221004703 hasRelatedWork W2136184105 @default.
- W4221004703 hasRelatedWork W2336974148 @default.
- W4221004703 hasRelatedWork W2389470892 @default.
- W4221004703 hasRelatedWork W3013515612 @default.
- W4221004703 hasRelatedWork W3195168932 @default.
- W4221004703 hasRelatedWork W2187500075 @default.
- W4221004703 hasRelatedWork W2345184372 @default.
- W4221004703 hasVolume "10" @default.
- W4221004703 isParatext "false" @default.
- W4221004703 isRetracted "false" @default.
- W4221004703 workType "article" @default.