Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221008017> ?p ?o ?g. }
- W4221008017 abstract "Abstract The increasing interest in modeling the dynamics of ever larger proteins has revealed a fundamental problem with models that describe the molecular system as being in a global configuration state. This notion limits our ability to gather sufficient statistics of state probabilities or state-to-state transitions because for large molecular systems the number of metastable states grows exponentially with size. In this manuscript, we approach this challenge by introducing a method that combines our recent progress on independent Markov decomposition (IMD) with VAMPnets, a deep learning approach to Markov modeling. We establish a training objective that quantifies how well a given decomposition of the molecular system into independent subdomains with Markovian dynamics approximates the overall dynamics. By constructing an end-to-end learning framework, the decomposition into such subdomains and their individual Markov state models are simultaneously learned, providing a data-efficient and easily interpretable summary of the complex system dynamics. While learning the dynamical coupling between Markovian subdomains is still an open issue, the present results are a significant step towards learning “Ising models” of large molecular complexes from simulation data." @default.
- W4221008017 created "2022-04-03" @default.
- W4221008017 creator A5014208179 @default.
- W4221008017 creator A5024984944 @default.
- W4221008017 creator A5055016850 @default.
- W4221008017 creator A5061903235 @default.
- W4221008017 date "2022-03-31" @default.
- W4221008017 modified "2023-09-24" @default.
- W4221008017 title "Deep learning to decompose macromolecules into independent Markovian domains" @default.
- W4221008017 cites W1031578623 @default.
- W4221008017 cites W1524841735 @default.
- W4221008017 cites W1965418299 @default.
- W4221008017 cites W1985940938 @default.
- W4221008017 cites W1993555435 @default.
- W4221008017 cites W1993622915 @default.
- W4221008017 cites W1997054581 @default.
- W4221008017 cites W2003251032 @default.
- W4221008017 cites W2013441546 @default.
- W4221008017 cites W2025899185 @default.
- W4221008017 cites W2029667189 @default.
- W4221008017 cites W2046290306 @default.
- W4221008017 cites W2049489032 @default.
- W4221008017 cites W2053348581 @default.
- W4221008017 cites W2060384627 @default.
- W4221008017 cites W2062125287 @default.
- W4221008017 cites W2064276704 @default.
- W4221008017 cites W2065529642 @default.
- W4221008017 cites W2067035505 @default.
- W4221008017 cites W2067236515 @default.
- W4221008017 cites W2070359441 @default.
- W4221008017 cites W2085213650 @default.
- W4221008017 cites W2088647884 @default.
- W4221008017 cites W2088941628 @default.
- W4221008017 cites W2091707670 @default.
- W4221008017 cites W2111339528 @default.
- W4221008017 cites W2119963163 @default.
- W4221008017 cites W2125838338 @default.
- W4221008017 cites W2128846365 @default.
- W4221008017 cites W2138244783 @default.
- W4221008017 cites W2147988069 @default.
- W4221008017 cites W2226825552 @default.
- W4221008017 cites W2265661434 @default.
- W4221008017 cites W2295272344 @default.
- W4221008017 cites W2313116527 @default.
- W4221008017 cites W2317421918 @default.
- W4221008017 cites W2319675592 @default.
- W4221008017 cites W2570547882 @default.
- W4221008017 cites W2588045673 @default.
- W4221008017 cites W2595314721 @default.
- W4221008017 cites W2602423270 @default.
- W4221008017 cites W2606287176 @default.
- W4221008017 cites W2736124076 @default.
- W4221008017 cites W2778051509 @default.
- W4221008017 cites W2800067398 @default.
- W4221008017 cites W2898637854 @default.
- W4221008017 cites W2914695372 @default.
- W4221008017 cites W2922133433 @default.
- W4221008017 cites W2949223833 @default.
- W4221008017 cites W2954046734 @default.
- W4221008017 cites W2958122143 @default.
- W4221008017 cites W2963383782 @default.
- W4221008017 cites W2963426504 @default.
- W4221008017 cites W2964129632 @default.
- W4221008017 cites W2964917500 @default.
- W4221008017 cites W2995307719 @default.
- W4221008017 cites W3004688691 @default.
- W4221008017 cites W3005445344 @default.
- W4221008017 cites W3012252634 @default.
- W4221008017 cites W3040026723 @default.
- W4221008017 cites W3046751266 @default.
- W4221008017 cites W3086468583 @default.
- W4221008017 cites W3098503865 @default.
- W4221008017 cites W3099205493 @default.
- W4221008017 cites W3099245682 @default.
- W4221008017 cites W3099423575 @default.
- W4221008017 cites W3099803807 @default.
- W4221008017 cites W3100312042 @default.
- W4221008017 cites W3100810942 @default.
- W4221008017 cites W3186077117 @default.
- W4221008017 cites W3189465577 @default.
- W4221008017 cites W3207239870 @default.
- W4221008017 cites W3209850868 @default.
- W4221008017 cites W3214543740 @default.
- W4221008017 cites W4224236647 @default.
- W4221008017 cites W585413800 @default.
- W4221008017 doi "https://doi.org/10.1101/2022.03.30.486366" @default.
- W4221008017 hasPublicationYear "2022" @default.
- W4221008017 type Work @default.
- W4221008017 citedByCount "1" @default.
- W4221008017 countsByYear W42210080172023 @default.
- W4221008017 crossrefType "posted-content" @default.
- W4221008017 hasAuthorship W4221008017A5014208179 @default.
- W4221008017 hasAuthorship W4221008017A5024984944 @default.
- W4221008017 hasAuthorship W4221008017A5055016850 @default.
- W4221008017 hasAuthorship W4221008017A5061903235 @default.
- W4221008017 hasBestOaLocation W42210080171 @default.
- W4221008017 hasConcept C105795698 @default.
- W4221008017 hasConcept C11413529 @default.
- W4221008017 hasConcept C119857082 @default.
- W4221008017 hasConcept C121332964 @default.