Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221008465> ?p ?o ?g. }
- W4221008465 endingPage "3880" @default.
- W4221008465 startingPage "3867" @default.
- W4221008465 abstract "Refineries often blend fuels in order to achieve mandated fuel properties based on international and domestic standards. One of the mandated properties for gasoline is Octane Number (ON). There are two forms of measuring ON: Research Octane Number (RON) and Motor Octane Number (MON). Although there have been efforts to optimize the blending operation in refineries, the implementations of advanced machine learning models are limited. The intention behind exploring and enhancing this field is to avoid undesirable scenarios, such as off-specification products and quality giveaways, as these scenarios overburden refineries’ operational expenditures. The current work presents an innovative approach to predict the optimum fuel blending mechanism. This is accomplished through utilizing an integrated system composed of genetic algorithms (GA) and artificial neural networks (ANN). In addition, this work presents the polygonal algorithms that govern the optimization process. The system analyzes fuel inputs consisting of pure hydrocarbons, hydrocarbon–ethanol blends, and FACE (fuels for advanced combustion engines) gasoline–ethanol blends. There are ten pure hydrocarbons and six FACE gasoline’s that are the base of 243 fuels used. These components are presented as multiple input streams to the blending stage, at which the system computes multiple recipes utilizing the GA. The system derives these recipes by capitalizing on the polygonal method. This method offers a systematic approach to design optimal fuel with the lowest addition of relatively high octane components. The system is evaluated using 243 blends. The produced recipes are designed to meet the desired antiknocking index (AKI). The coefficient of determination (R2) result is 0.99 for RON, MON, and AKI, respectively. Furthermore, the mean absolute error (MAE) values are 1.99, 1.23, and 1.40 for RON, MON, and AKI, respectively. These results signify the success of the integrated system and its significant potential impact in mitigating undesirable blending scenarios." @default.
- W4221008465 created "2022-04-03" @default.
- W4221008465 creator A5004620038 @default.
- W4221008465 creator A5005332754 @default.
- W4221008465 creator A5036025789 @default.
- W4221008465 creator A5055929635 @default.
- W4221008465 creator A5064107041 @default.
- W4221008465 creator A5067051021 @default.
- W4221008465 creator A5087759655 @default.
- W4221008465 date "2022-03-11" @default.
- W4221008465 modified "2023-09-27" @default.
- W4221008465 title "A Methodology for Designing Octane Number of Fuels Using Genetic Algorithms and Artificial Neural Networks" @default.
- W4221008465 cites W1487582509 @default.
- W4221008465 cites W1604306926 @default.
- W4221008465 cites W1657583423 @default.
- W4221008465 cites W1983168408 @default.
- W4221008465 cites W1987198281 @default.
- W4221008465 cites W1988432934 @default.
- W4221008465 cites W2002228956 @default.
- W4221008465 cites W2016686136 @default.
- W4221008465 cites W2019660969 @default.
- W4221008465 cites W2022642999 @default.
- W4221008465 cites W2043189291 @default.
- W4221008465 cites W2044606117 @default.
- W4221008465 cites W2051951586 @default.
- W4221008465 cites W2055061314 @default.
- W4221008465 cites W2061723850 @default.
- W4221008465 cites W2070101886 @default.
- W4221008465 cites W2077779685 @default.
- W4221008465 cites W2079054774 @default.
- W4221008465 cites W2079841964 @default.
- W4221008465 cites W2080771795 @default.
- W4221008465 cites W2081986563 @default.
- W4221008465 cites W2086904394 @default.
- W4221008465 cites W2140802384 @default.
- W4221008465 cites W2275846292 @default.
- W4221008465 cites W2336257993 @default.
- W4221008465 cites W2378433297 @default.
- W4221008465 cites W2462646109 @default.
- W4221008465 cites W2521526537 @default.
- W4221008465 cites W2530396762 @default.
- W4221008465 cites W2584829707 @default.
- W4221008465 cites W2619056301 @default.
- W4221008465 cites W2726753168 @default.
- W4221008465 cites W2754036980 @default.
- W4221008465 cites W2793541628 @default.
- W4221008465 cites W2802982083 @default.
- W4221008465 cites W2913492072 @default.
- W4221008465 cites W3041692594 @default.
- W4221008465 cites W3045780021 @default.
- W4221008465 cites W3127214530 @default.
- W4221008465 cites W3160970966 @default.
- W4221008465 cites W3161025855 @default.
- W4221008465 cites W3176118425 @default.
- W4221008465 cites W3207907237 @default.
- W4221008465 cites W3216592974 @default.
- W4221008465 cites W4230402050 @default.
- W4221008465 cites W4251638839 @default.
- W4221008465 doi "https://doi.org/10.1021/acs.energyfuels.1c04052" @default.
- W4221008465 hasPublicationYear "2022" @default.
- W4221008465 type Work @default.
- W4221008465 citedByCount "4" @default.
- W4221008465 countsByYear W42210084652022 @default.
- W4221008465 countsByYear W42210084652023 @default.
- W4221008465 crossrefType "journal-article" @default.
- W4221008465 hasAuthorship W4221008465A5004620038 @default.
- W4221008465 hasAuthorship W4221008465A5005332754 @default.
- W4221008465 hasAuthorship W4221008465A5036025789 @default.
- W4221008465 hasAuthorship W4221008465A5055929635 @default.
- W4221008465 hasAuthorship W4221008465A5064107041 @default.
- W4221008465 hasAuthorship W4221008465A5067051021 @default.
- W4221008465 hasAuthorship W4221008465A5087759655 @default.
- W4221008465 hasConcept C103697071 @default.
- W4221008465 hasConcept C111919701 @default.
- W4221008465 hasConcept C11413529 @default.
- W4221008465 hasConcept C119857082 @default.
- W4221008465 hasConcept C127413603 @default.
- W4221008465 hasConcept C163721339 @default.
- W4221008465 hasConcept C178790620 @default.
- W4221008465 hasConcept C185592680 @default.
- W4221008465 hasConcept C20309002 @default.
- W4221008465 hasConcept C21880701 @default.
- W4221008465 hasConcept C2776624427 @default.
- W4221008465 hasConcept C41008148 @default.
- W4221008465 hasConcept C50644808 @default.
- W4221008465 hasConcept C548081761 @default.
- W4221008465 hasConcept C8880873 @default.
- W4221008465 hasConcept C98045186 @default.
- W4221008465 hasConceptScore W4221008465C103697071 @default.
- W4221008465 hasConceptScore W4221008465C111919701 @default.
- W4221008465 hasConceptScore W4221008465C11413529 @default.
- W4221008465 hasConceptScore W4221008465C119857082 @default.
- W4221008465 hasConceptScore W4221008465C127413603 @default.
- W4221008465 hasConceptScore W4221008465C163721339 @default.
- W4221008465 hasConceptScore W4221008465C178790620 @default.
- W4221008465 hasConceptScore W4221008465C185592680 @default.
- W4221008465 hasConceptScore W4221008465C20309002 @default.
- W4221008465 hasConceptScore W4221008465C21880701 @default.