Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221010232> ?p ?o ?g. }
- W4221010232 endingPage "102635" @default.
- W4221010232 startingPage "102635" @default.
- W4221010232 abstract "Eddy Currents (ECs) for Non Destructive Testing (NDT) is a method to determine the presence of flaws in metal materials. The estimation of flaw parameters like position and size through physical models is usually difficult. This article offers an alternative technique based on machine learning algorithms such as Artificial Neural Networks (ANNs). This approach often requires simulated signals to build an exhaustive training data-set, leading to a considerable amount of calculation time and resources. To deal with this problem, this article proposes a new method based on data augmentation via Principal Component Analysis (PCA). The presented method is evaluated using different kinds of simulated and experimental signals." @default.
- W4221010232 created "2022-04-03" @default.
- W4221010232 creator A5029632898 @default.
- W4221010232 creator A5069777137 @default.
- W4221010232 creator A5070419990 @default.
- W4221010232 creator A5083643254 @default.
- W4221010232 creator A5088309009 @default.
- W4221010232 date "2022-07-01" @default.
- W4221010232 modified "2023-10-16" @default.
- W4221010232 title "Non destructive Eddy Currents inversion using Artificial Neural Networks and data augmentation" @default.
- W4221010232 cites W1980221648 @default.
- W4221010232 cites W2000421548 @default.
- W4221010232 cites W2006650073 @default.
- W4221010232 cites W2018492175 @default.
- W4221010232 cites W2048711666 @default.
- W4221010232 cites W2061999648 @default.
- W4221010232 cites W2087070363 @default.
- W4221010232 cites W2088841962 @default.
- W4221010232 cites W2097615965 @default.
- W4221010232 cites W2130129917 @default.
- W4221010232 cites W2132603731 @default.
- W4221010232 cites W2141835753 @default.
- W4221010232 cites W2149562667 @default.
- W4221010232 cites W2154741022 @default.
- W4221010232 cites W2155482699 @default.
- W4221010232 cites W2167111786 @default.
- W4221010232 cites W2169092059 @default.
- W4221010232 cites W2178599892 @default.
- W4221010232 cites W2259438584 @default.
- W4221010232 cites W2488743304 @default.
- W4221010232 cites W2812229001 @default.
- W4221010232 cites W2895543448 @default.
- W4221010232 cites W2911806631 @default.
- W4221010232 cites W2917721872 @default.
- W4221010232 cites W4231109964 @default.
- W4221010232 doi "https://doi.org/10.1016/j.ndteint.2022.102635" @default.
- W4221010232 hasPublicationYear "2022" @default.
- W4221010232 type Work @default.
- W4221010232 citedByCount "5" @default.
- W4221010232 countsByYear W42210102322022 @default.
- W4221010232 countsByYear W42210102322023 @default.
- W4221010232 crossrefType "journal-article" @default.
- W4221010232 hasAuthorship W4221010232A5029632898 @default.
- W4221010232 hasAuthorship W4221010232A5069777137 @default.
- W4221010232 hasAuthorship W4221010232A5070419990 @default.
- W4221010232 hasAuthorship W4221010232A5083643254 @default.
- W4221010232 hasAuthorship W4221010232A5088309009 @default.
- W4221010232 hasConcept C10138342 @default.
- W4221010232 hasConcept C105795698 @default.
- W4221010232 hasConcept C109007969 @default.
- W4221010232 hasConcept C119599485 @default.
- W4221010232 hasConcept C119857082 @default.
- W4221010232 hasConcept C121332964 @default.
- W4221010232 hasConcept C127313418 @default.
- W4221010232 hasConcept C127413603 @default.
- W4221010232 hasConcept C131357438 @default.
- W4221010232 hasConcept C151730666 @default.
- W4221010232 hasConcept C154945302 @default.
- W4221010232 hasConcept C162324750 @default.
- W4221010232 hasConcept C177264268 @default.
- W4221010232 hasConcept C1893757 @default.
- W4221010232 hasConcept C198082294 @default.
- W4221010232 hasConcept C199360897 @default.
- W4221010232 hasConcept C27438332 @default.
- W4221010232 hasConcept C33923547 @default.
- W4221010232 hasConcept C41008148 @default.
- W4221010232 hasConcept C50644808 @default.
- W4221010232 hasConcept C55037315 @default.
- W4221010232 hasConcept C56529433 @default.
- W4221010232 hasConcept C62520636 @default.
- W4221010232 hasConcept C6441794 @default.
- W4221010232 hasConceptScore W4221010232C10138342 @default.
- W4221010232 hasConceptScore W4221010232C105795698 @default.
- W4221010232 hasConceptScore W4221010232C109007969 @default.
- W4221010232 hasConceptScore W4221010232C119599485 @default.
- W4221010232 hasConceptScore W4221010232C119857082 @default.
- W4221010232 hasConceptScore W4221010232C121332964 @default.
- W4221010232 hasConceptScore W4221010232C127313418 @default.
- W4221010232 hasConceptScore W4221010232C127413603 @default.
- W4221010232 hasConceptScore W4221010232C131357438 @default.
- W4221010232 hasConceptScore W4221010232C151730666 @default.
- W4221010232 hasConceptScore W4221010232C154945302 @default.
- W4221010232 hasConceptScore W4221010232C162324750 @default.
- W4221010232 hasConceptScore W4221010232C177264268 @default.
- W4221010232 hasConceptScore W4221010232C1893757 @default.
- W4221010232 hasConceptScore W4221010232C198082294 @default.
- W4221010232 hasConceptScore W4221010232C199360897 @default.
- W4221010232 hasConceptScore W4221010232C27438332 @default.
- W4221010232 hasConceptScore W4221010232C33923547 @default.
- W4221010232 hasConceptScore W4221010232C41008148 @default.
- W4221010232 hasConceptScore W4221010232C50644808 @default.
- W4221010232 hasConceptScore W4221010232C55037315 @default.
- W4221010232 hasConceptScore W4221010232C56529433 @default.
- W4221010232 hasConceptScore W4221010232C62520636 @default.
- W4221010232 hasConceptScore W4221010232C6441794 @default.
- W4221010232 hasLocation W42210102321 @default.
- W4221010232 hasLocation W42210102322 @default.
- W4221010232 hasLocation W42210102323 @default.