Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221010447> ?p ?o ?g. }
- W4221010447 endingPage "330" @default.
- W4221010447 startingPage "321" @default.
- W4221010447 abstract "Sodium borohydride (NaBH 4 ) is regarded as the most viable chemical for hydrogen production via hydrolysis thanks to its high theoretical hydrogen content, possible hydrogen evolution even at a low operation temperature, and producing environmentally-friendly products. However, the engineering of a high-performance catalyst is still needed to boost the kinetics of hydrolysis. Herein, nickel and cobalt decorated three-dimensional graphene (Ni-Co@3DG) nanostructure was fabricated via facile production pathway and successfully employed as the catalyst in the NaBH 4 hydrolysis reaction for the first time. The influence of the different parameters, including reaction temperature, NaBH 4 concentration, and catalyst loading, were examined to determine the optimum operating conditions for efficient hydrogen production. Additionally, this work differed from other works since the performance of the different artificial neural network (ANN) models were evaluated to find out the optimal ANN architecture to forecast the H 2 production rate. The physicochemical characterizations offered the fabricated nanocatalyst had a large specific surface area (885 m 2 .g −1 ), and uniformly distributed Ni-Co bimetallic alloys, thereby enhancing the electrochemically active surface area for hydrolysis of NaBH 4 . The findings proved the superior catalytic activity of Ni-Co@ 3DG towards NaBH 4 hydrolysis (initial concentration of 0.5 M) with the hydrogen production rate of 82.65 mmol . min − 1 . g cat at 25 ℃ , and catalyst loading of 0.05 g. The reusability evaluations revealed that the Ni-Co@ 3DG catalyst could retain 95.96% of its initial activity after five successive utilizations. The computational results demonstrated that the best performance metrics were obtained for the single-layer ANN model consisting of 15 neurons in the hidden layer trained using the Bayesian Regulation backpropagation algorithm with the tansig-purelin transfer function combination in the hidden and output layers, respectively. The results demonstrated the ANN forecasted data and experimental results were in accordance, implying the optimized ANN architecture could be utilized for the prediction of the H 2 production rate of the catalyst. • Ni-Co@ 3DG nanostructure was fabricated via facile solvothermal production pathway. • H 2 production by hydrolysis of NaBH 4 catalyzed by Ni-Co@ 3DG was investigated. • The Artificial Neural Network approach was utilized to forecast H 2 production rate. • Ni-Co@ 3DG facilitated the catalytic activity thanks to 3D ordered pore distribution. • A high retention rate of 95.96% for the 5 five successive utilizations was achieved." @default.
- W4221010447 created "2022-04-03" @default.
- W4221010447 creator A5062413764 @default.
- W4221010447 date "2022-05-01" @default.
- W4221010447 modified "2023-10-13" @default.
- W4221010447 title "Three-dimensional graphene network supported nickel-cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and developing of an artificial neural network modeling to forecast hydrogen production rate" @default.
- W4221010447 cites W1005276782 @default.
- W4221010447 cites W1240321332 @default.
- W4221010447 cites W1973814855 @default.
- W4221010447 cites W2006004986 @default.
- W4221010447 cites W2016749100 @default.
- W4221010447 cites W2024300245 @default.
- W4221010447 cites W2024663119 @default.
- W4221010447 cites W2026947294 @default.
- W4221010447 cites W2033755052 @default.
- W4221010447 cites W2045056012 @default.
- W4221010447 cites W2059677641 @default.
- W4221010447 cites W2063378862 @default.
- W4221010447 cites W2086401101 @default.
- W4221010447 cites W2114699941 @default.
- W4221010447 cites W2132844045 @default.
- W4221010447 cites W2137212104 @default.
- W4221010447 cites W2162473720 @default.
- W4221010447 cites W2338857161 @default.
- W4221010447 cites W2507423338 @default.
- W4221010447 cites W2511922313 @default.
- W4221010447 cites W2555368354 @default.
- W4221010447 cites W2555664979 @default.
- W4221010447 cites W2560071060 @default.
- W4221010447 cites W2593303491 @default.
- W4221010447 cites W2601125949 @default.
- W4221010447 cites W2739765632 @default.
- W4221010447 cites W2748419046 @default.
- W4221010447 cites W2759452873 @default.
- W4221010447 cites W2772883408 @default.
- W4221010447 cites W2790621909 @default.
- W4221010447 cites W2896975996 @default.
- W4221010447 cites W2901979063 @default.
- W4221010447 cites W2903292932 @default.
- W4221010447 cites W2945038746 @default.
- W4221010447 cites W2948556164 @default.
- W4221010447 cites W3003324733 @default.
- W4221010447 cites W3006408519 @default.
- W4221010447 cites W3093539147 @default.
- W4221010447 cites W3094024045 @default.
- W4221010447 cites W3132554355 @default.
- W4221010447 cites W3198068079 @default.
- W4221010447 cites W3216511896 @default.
- W4221010447 cites W4200324920 @default.
- W4221010447 cites W4213389581 @default.
- W4221010447 doi "https://doi.org/10.1016/j.cherd.2022.03.028" @default.
- W4221010447 hasPublicationYear "2022" @default.
- W4221010447 type Work @default.
- W4221010447 citedByCount "37" @default.
- W4221010447 countsByYear W42210104472022 @default.
- W4221010447 countsByYear W42210104472023 @default.
- W4221010447 crossrefType "journal-article" @default.
- W4221010447 hasAuthorship W4221010447A5062413764 @default.
- W4221010447 hasConcept C127413603 @default.
- W4221010447 hasConcept C161790260 @default.
- W4221010447 hasConcept C171250308 @default.
- W4221010447 hasConcept C178790620 @default.
- W4221010447 hasConcept C179104552 @default.
- W4221010447 hasConcept C185592680 @default.
- W4221010447 hasConcept C191897082 @default.
- W4221010447 hasConcept C192562407 @default.
- W4221010447 hasConcept C202189072 @default.
- W4221010447 hasConcept C2780048404 @default.
- W4221010447 hasConcept C30080830 @default.
- W4221010447 hasConcept C42360764 @default.
- W4221010447 hasConcept C43411465 @default.
- W4221010447 hasConcept C504270822 @default.
- W4221010447 hasConcept C512968161 @default.
- W4221010447 hasConcept C515602321 @default.
- W4221010447 hasConcept C94412978 @default.
- W4221010447 hasConceptScore W4221010447C127413603 @default.
- W4221010447 hasConceptScore W4221010447C161790260 @default.
- W4221010447 hasConceptScore W4221010447C171250308 @default.
- W4221010447 hasConceptScore W4221010447C178790620 @default.
- W4221010447 hasConceptScore W4221010447C179104552 @default.
- W4221010447 hasConceptScore W4221010447C185592680 @default.
- W4221010447 hasConceptScore W4221010447C191897082 @default.
- W4221010447 hasConceptScore W4221010447C192562407 @default.
- W4221010447 hasConceptScore W4221010447C202189072 @default.
- W4221010447 hasConceptScore W4221010447C2780048404 @default.
- W4221010447 hasConceptScore W4221010447C30080830 @default.
- W4221010447 hasConceptScore W4221010447C42360764 @default.
- W4221010447 hasConceptScore W4221010447C43411465 @default.
- W4221010447 hasConceptScore W4221010447C504270822 @default.
- W4221010447 hasConceptScore W4221010447C512968161 @default.
- W4221010447 hasConceptScore W4221010447C515602321 @default.
- W4221010447 hasConceptScore W4221010447C94412978 @default.
- W4221010447 hasLocation W42210104471 @default.
- W4221010447 hasOpenAccess W4221010447 @default.
- W4221010447 hasPrimaryLocation W42210104471 @default.
- W4221010447 hasRelatedWork W2019853176 @default.
- W4221010447 hasRelatedWork W2098302275 @default.
- W4221010447 hasRelatedWork W2122790229 @default.