Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221010481> ?p ?o ?g. }
- W4221010481 endingPage "114278" @default.
- W4221010481 startingPage "114278" @default.
- W4221010481 abstract "Projection depth (PD), one of the prevailing location depth notions, is a powerful and favored tool for multivariate nonparametric analysis. It permits the extension of the univariate median and weighted means to a multivariate setting. The multidimensional projection depth median (PM) and depth weighted means, including the Stahel–Donoho (SD) estimator are highly robust and affine equivariant. PM has the highest finite sample breakdown point robustness among affine equivariant location estimators. However, the computation of PD remains a challenge because its exact computation is only feasible for a data set with a dimension that is theoretically no higher than eight but practically no higher than three. Approximate algorithms such as random direction procedure or simulated annealing (SA) algorithm, are time-consuming in high-dimensional cases. Here, we present an efficient SA algorithm and its extension for the computation of PD. Simulated and real data examples indicate that the proposed algorithms outperform their competitors, including the Nelder–Mead method, and the SA algorithm, in high-dimensional cases and can obtain highly accurate results compared with those of the exact algorithm in low-dimensional cases." @default.
- W4221010481 created "2022-04-03" @default.
- W4221010481 creator A5006424102 @default.
- W4221010481 creator A5037782878 @default.
- W4221010481 creator A5077086313 @default.
- W4221010481 date "2022-09-01" @default.
- W4221010481 modified "2023-09-27" @default.
- W4221010481 title "Employing the MCMC technique to compute the projection depth in high dimensions" @default.
- W4221010481 cites W1495929194 @default.
- W4221010481 cites W1595159159 @default.
- W4221010481 cites W1973744648 @default.
- W4221010481 cites W1979722589 @default.
- W4221010481 cites W1985825040 @default.
- W4221010481 cites W2003243598 @default.
- W4221010481 cites W2008643631 @default.
- W4221010481 cites W2019362891 @default.
- W4221010481 cites W2020459771 @default.
- W4221010481 cites W2020999234 @default.
- W4221010481 cites W2024060531 @default.
- W4221010481 cites W2024464985 @default.
- W4221010481 cites W2029889932 @default.
- W4221010481 cites W2039892753 @default.
- W4221010481 cites W2041684917 @default.
- W4221010481 cites W2047696512 @default.
- W4221010481 cites W2056760934 @default.
- W4221010481 cites W2060222605 @default.
- W4221010481 cites W2071174522 @default.
- W4221010481 cites W2073412813 @default.
- W4221010481 cites W2077169215 @default.
- W4221010481 cites W2089245401 @default.
- W4221010481 cites W2099929014 @default.
- W4221010481 cites W2115808162 @default.
- W4221010481 cites W2123768985 @default.
- W4221010481 cites W2124448432 @default.
- W4221010481 cites W2138309709 @default.
- W4221010481 cites W2145672247 @default.
- W4221010481 cites W2153504150 @default.
- W4221010481 cites W2161611531 @default.
- W4221010481 cites W2171074980 @default.
- W4221010481 cites W2330487032 @default.
- W4221010481 cites W2755489912 @default.
- W4221010481 cites W2885912929 @default.
- W4221010481 cites W2962823949 @default.
- W4221010481 cites W2963211478 @default.
- W4221010481 cites W2963458157 @default.
- W4221010481 cites W3099393438 @default.
- W4221010481 cites W3104967589 @default.
- W4221010481 cites W4239970699 @default.
- W4221010481 doi "https://doi.org/10.1016/j.cam.2022.114278" @default.
- W4221010481 hasPublicationYear "2022" @default.
- W4221010481 type Work @default.
- W4221010481 citedByCount "0" @default.
- W4221010481 crossrefType "journal-article" @default.
- W4221010481 hasAuthorship W4221010481A5006424102 @default.
- W4221010481 hasAuthorship W4221010481A5037782878 @default.
- W4221010481 hasAuthorship W4221010481A5077086313 @default.
- W4221010481 hasConcept C102366305 @default.
- W4221010481 hasConcept C104317684 @default.
- W4221010481 hasConcept C105795698 @default.
- W4221010481 hasConcept C111350023 @default.
- W4221010481 hasConcept C11413529 @default.
- W4221010481 hasConcept C161584116 @default.
- W4221010481 hasConcept C185429906 @default.
- W4221010481 hasConcept C185592680 @default.
- W4221010481 hasConcept C19499675 @default.
- W4221010481 hasConcept C199163554 @default.
- W4221010481 hasConcept C2524010 @default.
- W4221010481 hasConcept C28826006 @default.
- W4221010481 hasConcept C33923547 @default.
- W4221010481 hasConcept C45374587 @default.
- W4221010481 hasConcept C55493867 @default.
- W4221010481 hasConcept C63479239 @default.
- W4221010481 hasConcept C92757383 @default.
- W4221010481 hasConceptScore W4221010481C102366305 @default.
- W4221010481 hasConceptScore W4221010481C104317684 @default.
- W4221010481 hasConceptScore W4221010481C105795698 @default.
- W4221010481 hasConceptScore W4221010481C111350023 @default.
- W4221010481 hasConceptScore W4221010481C11413529 @default.
- W4221010481 hasConceptScore W4221010481C161584116 @default.
- W4221010481 hasConceptScore W4221010481C185429906 @default.
- W4221010481 hasConceptScore W4221010481C185592680 @default.
- W4221010481 hasConceptScore W4221010481C19499675 @default.
- W4221010481 hasConceptScore W4221010481C199163554 @default.
- W4221010481 hasConceptScore W4221010481C2524010 @default.
- W4221010481 hasConceptScore W4221010481C28826006 @default.
- W4221010481 hasConceptScore W4221010481C33923547 @default.
- W4221010481 hasConceptScore W4221010481C45374587 @default.
- W4221010481 hasConceptScore W4221010481C55493867 @default.
- W4221010481 hasConceptScore W4221010481C63479239 @default.
- W4221010481 hasConceptScore W4221010481C92757383 @default.
- W4221010481 hasFunder F4320321001 @default.
- W4221010481 hasFunder F4320321543 @default.
- W4221010481 hasFunder F4320324174 @default.
- W4221010481 hasFunder F4320335443 @default.
- W4221010481 hasLocation W42210104811 @default.
- W4221010481 hasOpenAccess W4221010481 @default.
- W4221010481 hasPrimaryLocation W42210104811 @default.
- W4221010481 hasRelatedWork W1605111885 @default.