Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221010845> ?p ?o ?g. }
- W4221010845 abstract "Abstract Background Necrotizing enterocolitis (NEC) is a common, potentially catastrophic intestinal disease among very low birthweight premature infants. Affecting up to 15% of neonates born weighing less than 1500 g, NEC causes sudden-onset, progressive intestinal inflammation and necrosis, which can lead to significant bowel loss, multi-organ injury, or death. No unifying cause of NEC has been identified, nor is there any reliable biomarker that indicates an individual patient’s risk of the disease. Without a way to predict NEC in advance, the current medical strategy involves close clinical monitoring in an effort to treat babies with NEC as quickly as possible before irrecoverable intestinal damage occurs. In this report, we describe a novel machine learning application for generating dynamic, individualized NEC risk scores based on intestinal microbiota data, which can be determined from sequencing bacterial DNA from otherwise discarded infant stool. A central insight that differentiates our work from past efforts was the recognition that disease prediction from stool microbiota represents a specific subtype of machine learning problem known as multiple instance learning (MIL). Results We used a neural network-based MIL architecture, which we tested on independent datasets from two cohorts encompassing 3595 stool samples from 261 at-risk infants. Our report also introduces a new concept called the “growing bag” analysis, which applies MIL over time, allowing incorporation of past data into each new risk calculation. This approach allowed early, accurate NEC prediction, with a mean sensitivity of 86% and specificity of 90%. True-positive NEC predictions occurred an average of 8 days before disease onset. We also demonstrate that an attention-gated mechanism incorporated into our MIL algorithm permits interpretation of NEC risk, identifying several bacterial taxa that past work has associated with NEC, and potentially pointing the way toward new hypotheses about NEC pathogenesis. Our system is flexible, accepting microbiota data generated from targeted 16S or “shotgun” whole-genome DNA sequencing. It performs well in the setting of common, potentially confounding preterm neonatal clinical events such as perinatal cardiopulmonary depression, antibiotic administration, feeding disruptions, or transitions between breast feeding and formula. Conclusions We have developed and validated a robust MIL-based system for NEC prediction from harmlessly collected premature infant stool. While this system was developed for NEC prediction, our MIL approach may also be applicable to other diseases characterized by changes in the human microbiota." @default.
- W4221010845 created "2022-04-03" @default.
- W4221010845 creator A5009126155 @default.
- W4221010845 creator A5012289548 @default.
- W4221010845 creator A5072482796 @default.
- W4221010845 date "2022-03-25" @default.
- W4221010845 modified "2023-10-10" @default.
- W4221010845 title "Interpretable prediction of necrotizing enterocolitis from machine learning analysis of premature infant stool microbiota" @default.
- W4221010845 cites W1503352355 @default.
- W4221010845 cites W1523266228 @default.
- W4221010845 cites W1967189540 @default.
- W4221010845 cites W1975434115 @default.
- W4221010845 cites W1997123421 @default.
- W4221010845 cites W2000543170 @default.
- W4221010845 cites W2001463272 @default.
- W4221010845 cites W2012466364 @default.
- W4221010845 cites W2023506796 @default.
- W4221010845 cites W2026029153 @default.
- W4221010845 cites W2029884335 @default.
- W4221010845 cites W2047812910 @default.
- W4221010845 cites W2050451609 @default.
- W4221010845 cites W2052969143 @default.
- W4221010845 cites W2059343174 @default.
- W4221010845 cites W2065415897 @default.
- W4221010845 cites W2078112764 @default.
- W4221010845 cites W2091308450 @default.
- W4221010845 cites W2100746158 @default.
- W4221010845 cites W2108122869 @default.
- W4221010845 cites W2110119381 @default.
- W4221010845 cites W2125479168 @default.
- W4221010845 cites W2128769815 @default.
- W4221010845 cites W2134721504 @default.
- W4221010845 cites W2139884694 @default.
- W4221010845 cites W2148030154 @default.
- W4221010845 cites W2162015645 @default.
- W4221010845 cites W2162190649 @default.
- W4221010845 cites W2166949225 @default.
- W4221010845 cites W2207819727 @default.
- W4221010845 cites W2295620997 @default.
- W4221010845 cites W2326641739 @default.
- W4221010845 cites W2582492205 @default.
- W4221010845 cites W2588681363 @default.
- W4221010845 cites W2592537218 @default.
- W4221010845 cites W2611464498 @default.
- W4221010845 cites W2731955755 @default.
- W4221010845 cites W2761460614 @default.
- W4221010845 cites W2767844672 @default.
- W4221010845 cites W2769542288 @default.
- W4221010845 cites W2770324303 @default.
- W4221010845 cites W2771673050 @default.
- W4221010845 cites W2808466192 @default.
- W4221010845 cites W2898148278 @default.
- W4221010845 cites W2899387462 @default.
- W4221010845 cites W2909145450 @default.
- W4221010845 cites W2914348147 @default.
- W4221010845 cites W2915529376 @default.
- W4221010845 cites W2922143522 @default.
- W4221010845 cites W2950612336 @default.
- W4221010845 cites W2951299640 @default.
- W4221010845 cites W2962019792 @default.
- W4221010845 cites W2982508760 @default.
- W4221010845 cites W2985559811 @default.
- W4221010845 cites W2990618091 @default.
- W4221010845 cites W2995792428 @default.
- W4221010845 cites W2997789157 @default.
- W4221010845 cites W3003579885 @default.
- W4221010845 cites W3005296067 @default.
- W4221010845 cites W3005676248 @default.
- W4221010845 cites W3011277118 @default.
- W4221010845 cites W3040924159 @default.
- W4221010845 cites W3093451665 @default.
- W4221010845 cites W4200012084 @default.
- W4221010845 cites W4235469056 @default.
- W4221010845 cites W4248468736 @default.
- W4221010845 cites W4252160351 @default.
- W4221010845 cites W4299542564 @default.
- W4221010845 doi "https://doi.org/10.1186/s12859-022-04618-w" @default.
- W4221010845 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35337258" @default.
- W4221010845 hasPublicationYear "2022" @default.
- W4221010845 type Work @default.
- W4221010845 citedByCount "15" @default.
- W4221010845 countsByYear W42210108452022 @default.
- W4221010845 countsByYear W42210108452023 @default.
- W4221010845 crossrefType "journal-article" @default.
- W4221010845 hasAuthorship W4221010845A5009126155 @default.
- W4221010845 hasAuthorship W4221010845A5012289548 @default.
- W4221010845 hasAuthorship W4221010845A5072482796 @default.
- W4221010845 hasBestOaLocation W42210108451 @default.
- W4221010845 hasConcept C119857082 @default.
- W4221010845 hasConcept C126322002 @default.
- W4221010845 hasConcept C154945302 @default.
- W4221010845 hasConcept C177713679 @default.
- W4221010845 hasConcept C203014093 @default.
- W4221010845 hasConcept C2776258884 @default.
- W4221010845 hasConcept C2779134260 @default.
- W4221010845 hasConcept C2779303187 @default.
- W4221010845 hasConcept C2781197716 @default.
- W4221010845 hasConcept C41008148 @default.
- W4221010845 hasConcept C539455810 @default.
- W4221010845 hasConcept C55493867 @default.