Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221013571> ?p ?o ?g. }
- W4221013571 endingPage "13" @default.
- W4221013571 startingPage "1" @default.
- W4221013571 abstract "Change detection plays an important role in Earth surface observation and has been extensively investigated over recent decades. A hyperspectral image (HSI) with high spectral resolution provides abundant ground object information, which is expected by finer change detection. The existing convolutional neural network (CNN)-based methods extract image features with a fixed kernel, which is incompetent to cope with complicated object details at diverse scales in HSI. In this article, we propose a deep multiscale pyramid network enhanced with spatial–spectral residual attention (DMP <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text {s}^{2} $ </tex-math></inline-formula> raN) for HSI change detection, which has strong capability to mine multilevel and multiscale spatial–spectral features, improving the performance in complex changed regions. There are two key characteristics: 1) the multiscale spatial–spectral features are extracted by the multiscale pyramid convolution and enhanced by spatial–spectral residual attention module ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text {S}^{2} $ </tex-math></inline-formula> RAM) of each scale and 2) the multilevel features are obtained by aggregating the multiscale features level by level. As a result of this design, the proposed DMP <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$text {s}^{2} $ </tex-math></inline-formula> raN learns more discriminative features with both strong semantic information and rich spatial–spectral information. Experiments carried out on three datasets demonstrate the competitive performance of the proposed method in both qualitative and quantitative analyses." @default.
- W4221013571 created "2022-04-03" @default.
- W4221013571 creator A5010255725 @default.
- W4221013571 creator A5028464253 @default.
- W4221013571 creator A5033017179 @default.
- W4221013571 creator A5044736869 @default.
- W4221013571 creator A5045803591 @default.
- W4221013571 creator A5067798266 @default.
- W4221013571 date "2022-01-01" @default.
- W4221013571 modified "2023-10-16" @default.
- W4221013571 title "A Deep Multiscale Pyramid Network Enhanced With Spatial–Spectral Residual Attention for Hyperspectral Image Change Detection" @default.
- W4221013571 cites W1979061792 @default.
- W4221013571 cites W1997413270 @default.
- W4221013571 cites W1998595580 @default.
- W4221013571 cites W2006383776 @default.
- W4221013571 cites W2064675550 @default.
- W4221013571 cites W2087120756 @default.
- W4221013571 cites W2104374858 @default.
- W4221013571 cites W2111320133 @default.
- W4221013571 cites W2122700624 @default.
- W4221013571 cites W2128686953 @default.
- W4221013571 cites W2134451879 @default.
- W4221013571 cites W2134969826 @default.
- W4221013571 cites W2136236240 @default.
- W4221013571 cites W2153864221 @default.
- W4221013571 cites W2160122894 @default.
- W4221013571 cites W2431738724 @default.
- W4221013571 cites W2475283175 @default.
- W4221013571 cites W2610884537 @default.
- W4221013571 cites W2741377155 @default.
- W4221013571 cites W2792827505 @default.
- W4221013571 cites W2886966084 @default.
- W4221013571 cites W2898682679 @default.
- W4221013571 cites W2911648799 @default.
- W4221013571 cites W2945316973 @default.
- W4221013571 cites W2947058136 @default.
- W4221013571 cites W2953308875 @default.
- W4221013571 cites W2979572910 @default.
- W4221013571 cites W2989751901 @default.
- W4221013571 cites W2997043451 @default.
- W4221013571 cites W3012456963 @default.
- W4221013571 cites W3034552520 @default.
- W4221013571 cites W3099239430 @default.
- W4221013571 cites W3099831940 @default.
- W4221013571 cites W3127939367 @default.
- W4221013571 cites W3147363216 @default.
- W4221013571 cites W3163345093 @default.
- W4221013571 cites W3168690312 @default.
- W4221013571 cites W4206267281 @default.
- W4221013571 doi "https://doi.org/10.1109/tgrs.2022.3161386" @default.
- W4221013571 hasPublicationYear "2022" @default.
- W4221013571 type Work @default.
- W4221013571 citedByCount "11" @default.
- W4221013571 countsByYear W42210135712022 @default.
- W4221013571 countsByYear W42210135712023 @default.
- W4221013571 crossrefType "journal-article" @default.
- W4221013571 hasAuthorship W4221013571A5010255725 @default.
- W4221013571 hasAuthorship W4221013571A5028464253 @default.
- W4221013571 hasAuthorship W4221013571A5033017179 @default.
- W4221013571 hasAuthorship W4221013571A5044736869 @default.
- W4221013571 hasAuthorship W4221013571A5045803591 @default.
- W4221013571 hasAuthorship W4221013571A5067798266 @default.
- W4221013571 hasConcept C11413529 @default.
- W4221013571 hasConcept C118615104 @default.
- W4221013571 hasConcept C142575187 @default.
- W4221013571 hasConcept C153180895 @default.
- W4221013571 hasConcept C154945302 @default.
- W4221013571 hasConcept C155512373 @default.
- W4221013571 hasConcept C159078339 @default.
- W4221013571 hasConcept C2524010 @default.
- W4221013571 hasConcept C33923547 @default.
- W4221013571 hasConcept C41008148 @default.
- W4221013571 hasConcept C74193536 @default.
- W4221013571 hasConcept C81363708 @default.
- W4221013571 hasConceptScore W4221013571C11413529 @default.
- W4221013571 hasConceptScore W4221013571C118615104 @default.
- W4221013571 hasConceptScore W4221013571C142575187 @default.
- W4221013571 hasConceptScore W4221013571C153180895 @default.
- W4221013571 hasConceptScore W4221013571C154945302 @default.
- W4221013571 hasConceptScore W4221013571C155512373 @default.
- W4221013571 hasConceptScore W4221013571C159078339 @default.
- W4221013571 hasConceptScore W4221013571C2524010 @default.
- W4221013571 hasConceptScore W4221013571C33923547 @default.
- W4221013571 hasConceptScore W4221013571C41008148 @default.
- W4221013571 hasConceptScore W4221013571C74193536 @default.
- W4221013571 hasConceptScore W4221013571C81363708 @default.
- W4221013571 hasFunder F4320321001 @default.
- W4221013571 hasFunder F4320321543 @default.
- W4221013571 hasFunder F4320327912 @default.
- W4221013571 hasFunder F4320335787 @default.
- W4221013571 hasFunder F4320336567 @default.
- W4221013571 hasFunder F4320336605 @default.
- W4221013571 hasFunder F4320337111 @default.
- W4221013571 hasLocation W42210135711 @default.
- W4221013571 hasOpenAccess W4221013571 @default.
- W4221013571 hasPrimaryLocation W42210135711 @default.
- W4221013571 hasRelatedWork W2028628118 @default.
- W4221013571 hasRelatedWork W2110459882 @default.