Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221016344> ?p ?o ?g. }
- W4221016344 endingPage "106670" @default.
- W4221016344 startingPage "106670" @default.
- W4221016344 abstract "The ongoing pandemic proved fundamental is to assess a subject's respiratory functionality and breathing pattern measurement during quiet breathing is feasible in almost all patients, even those uncooperative. Breathing pattern consists of tidal volume and respiratory rate in an individual assessed by data tracks of lung or chest wall volume over time. State-of-art analysis of these data requires operator-dependent choices such as individuation of local minima in the track, elimination of anomalous breaths and individuation of breath clusters corresponding to different breathing patterns.A semi-automatic, robust and reproducible procedure was proposed to pre-process and analyse respiratory tracks, based on Functional Data Analysis (FDA) techniques, to identify representative breath curve and the corresponding breathing patterns. This was achieved through three steps: 1) breath separation through precise localization of the minima of the volume trace; 2) functional outlier breaths detection according to time-duration, magnitude and shape; 3) breath clustering to identify different pattern of interest, through K-medoids with Alignment. The method was firstly validated on simulated tracks and then applied to real data in conditions of clinical interest: operational volume change, exercise, mechanical ventilation, paradoxical breathing and age.The total error in the accuracy of minima detection and in was less than 5%; with the artificial outliers being almost completely removed with an accuracy of 99%. During incremental exercise and independently on the bike resistance level, five clusters were identified (quiet breathing; recovery phase; onset of exercise; maximal and intermediate levels of exercise). During mechanical ventilation, the procedure was able to separate the non-ventilated from the ventilatory-supported breathing and to identify the worsening of paradoxical breathing due to the disease progression and the breathing pattern changes in healthy subjects due to age.We proposed a robust validated automatic breathing patterns identification algorithm that extracted representative curves that could be implemented in clinical practice for objective comparison of the breathing patterns within and between subjects. In all case studies the identified patterns proved to be coherent with the clinical conditions and the physiopathology of the subjects, therefore enforcing the potential clinical translational value of the method." @default.
- W4221016344 created "2022-04-03" @default.
- W4221016344 creator A5032377653 @default.
- W4221016344 creator A5052509052 @default.
- W4221016344 creator A5085074218 @default.
- W4221016344 creator A5086302481 @default.
- W4221016344 date "2022-04-01" @default.
- W4221016344 modified "2023-10-04" @default.
- W4221016344 title "Breathing patterns recognition: A functional data analysis approach" @default.
- W4221016344 cites W1766423223 @default.
- W4221016344 cites W1912865552 @default.
- W4221016344 cites W1945187647 @default.
- W4221016344 cites W1972184434 @default.
- W4221016344 cites W1991308917 @default.
- W4221016344 cites W2003122065 @default.
- W4221016344 cites W2041749892 @default.
- W4221016344 cites W2045649740 @default.
- W4221016344 cites W2068033279 @default.
- W4221016344 cites W2070179406 @default.
- W4221016344 cites W2077477329 @default.
- W4221016344 cites W2085570173 @default.
- W4221016344 cites W2086872943 @default.
- W4221016344 cites W2090853303 @default.
- W4221016344 cites W2099748389 @default.
- W4221016344 cites W2109774088 @default.
- W4221016344 cites W2164481873 @default.
- W4221016344 cites W2285206573 @default.
- W4221016344 cites W2555699546 @default.
- W4221016344 cites W2759710611 @default.
- W4221016344 cites W2784397775 @default.
- W4221016344 cites W2784812244 @default.
- W4221016344 cites W2794078538 @default.
- W4221016344 cites W2804966671 @default.
- W4221016344 cites W2997199480 @default.
- W4221016344 cites W3004361176 @default.
- W4221016344 cites W3190948566 @default.
- W4221016344 cites W4250766106 @default.
- W4221016344 doi "https://doi.org/10.1016/j.cmpb.2022.106670" @default.
- W4221016344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35172250" @default.
- W4221016344 hasPublicationYear "2022" @default.
- W4221016344 type Work @default.
- W4221016344 citedByCount "3" @default.
- W4221016344 countsByYear W42210163442022 @default.
- W4221016344 countsByYear W42210163442023 @default.
- W4221016344 crossrefType "journal-article" @default.
- W4221016344 hasAuthorship W4221016344A5032377653 @default.
- W4221016344 hasAuthorship W4221016344A5052509052 @default.
- W4221016344 hasAuthorship W4221016344A5085074218 @default.
- W4221016344 hasAuthorship W4221016344A5086302481 @default.
- W4221016344 hasConcept C119857082 @default.
- W4221016344 hasConcept C121332964 @default.
- W4221016344 hasConcept C126322002 @default.
- W4221016344 hasConcept C134306372 @default.
- W4221016344 hasConcept C153180895 @default.
- W4221016344 hasConcept C154945302 @default.
- W4221016344 hasConcept C186633575 @default.
- W4221016344 hasConcept C200457457 @default.
- W4221016344 hasConcept C2777953023 @default.
- W4221016344 hasConcept C33923547 @default.
- W4221016344 hasConcept C39300077 @default.
- W4221016344 hasConcept C41008148 @default.
- W4221016344 hasConcept C42219234 @default.
- W4221016344 hasConcept C51820054 @default.
- W4221016344 hasConcept C71924100 @default.
- W4221016344 hasConcept C79337645 @default.
- W4221016344 hasConcept C8213797 @default.
- W4221016344 hasConcept C84393581 @default.
- W4221016344 hasConcept C97355855 @default.
- W4221016344 hasConceptScore W4221016344C119857082 @default.
- W4221016344 hasConceptScore W4221016344C121332964 @default.
- W4221016344 hasConceptScore W4221016344C126322002 @default.
- W4221016344 hasConceptScore W4221016344C134306372 @default.
- W4221016344 hasConceptScore W4221016344C153180895 @default.
- W4221016344 hasConceptScore W4221016344C154945302 @default.
- W4221016344 hasConceptScore W4221016344C186633575 @default.
- W4221016344 hasConceptScore W4221016344C200457457 @default.
- W4221016344 hasConceptScore W4221016344C2777953023 @default.
- W4221016344 hasConceptScore W4221016344C33923547 @default.
- W4221016344 hasConceptScore W4221016344C39300077 @default.
- W4221016344 hasConceptScore W4221016344C41008148 @default.
- W4221016344 hasConceptScore W4221016344C42219234 @default.
- W4221016344 hasConceptScore W4221016344C51820054 @default.
- W4221016344 hasConceptScore W4221016344C71924100 @default.
- W4221016344 hasConceptScore W4221016344C79337645 @default.
- W4221016344 hasConceptScore W4221016344C8213797 @default.
- W4221016344 hasConceptScore W4221016344C84393581 @default.
- W4221016344 hasConceptScore W4221016344C97355855 @default.
- W4221016344 hasLocation W42210163441 @default.
- W4221016344 hasLocation W42210163442 @default.
- W4221016344 hasOpenAccess W4221016344 @default.
- W4221016344 hasPrimaryLocation W42210163441 @default.
- W4221016344 hasRelatedWork W2030418959 @default.
- W4221016344 hasRelatedWork W2061100376 @default.
- W4221016344 hasRelatedWork W2281238815 @default.
- W4221016344 hasRelatedWork W2294785595 @default.
- W4221016344 hasRelatedWork W2332122471 @default.
- W4221016344 hasRelatedWork W2417735941 @default.
- W4221016344 hasRelatedWork W2913367441 @default.