Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221016746> ?p ?o ?g. }
- W4221016746 endingPage "1381" @default.
- W4221016746 startingPage "1365" @default.
- W4221016746 abstract "The widespread digitization of critical industrial systems such as nuclear reactors has led to the development of digital twins and/or the adoption of artificial intelligence techniques for simulating baseline behavior and performing predictive maintenance. Such analytical tools, referred to as anomaly detection techniques, rely on features extracted from data that describe the underlying physical process. While these anomaly detection systems may work well with simulated data, their real-world applications are often hindered by the presence of noise. In some cases, noise may obscure subtle anomalies that may carry information about incipient stages of system faults. These subtle variations may also be the result of malicious intrusion such as so-called false data injection attack, equipment degradation causing sensor drift, or other natural disturbances in the process or the sensors. Consequently, there is a need to extract features that are robust to noise and also denoise data in a manner that aids machine-learning (ML) tools in diagnostics. In this regard, this paper presents a singular value decomposition–based statistical data–driven approach for feature extraction, denoted by randomized window decomposition, to capture the underlying physics of the system. Additionally, the features are used to denoise data to reveal subtle anomalies while also preserving relevant information for ML algorithms. The denoising algorithm is demonstrated using a RELAP5 simulation of a representative nuclear reactor with virtual noise." @default.
- W4221016746 created "2022-04-03" @default.
- W4221016746 creator A5006119928 @default.
- W4221016746 creator A5036628829 @default.
- W4221016746 creator A5050825869 @default.
- W4221016746 date "2022-03-11" @default.
- W4221016746 modified "2023-10-10" @default.
- W4221016746 title "Denoising Algorithm for Subtle Anomaly Detection" @default.
- W4221016746 cites W10130694 @default.
- W4221016746 cites W1633869374 @default.
- W4221016746 cites W2007849159 @default.
- W4221016746 cites W2027267343 @default.
- W4221016746 cites W2038651258 @default.
- W4221016746 cites W2057787550 @default.
- W4221016746 cites W2071816567 @default.
- W4221016746 cites W2074657679 @default.
- W4221016746 cites W2087347434 @default.
- W4221016746 cites W2099242680 @default.
- W4221016746 cites W2105503412 @default.
- W4221016746 cites W2105934661 @default.
- W4221016746 cites W2118294504 @default.
- W4221016746 cites W2127979711 @default.
- W4221016746 cites W2132870739 @default.
- W4221016746 cites W2137687977 @default.
- W4221016746 cites W2139638562 @default.
- W4221016746 cites W2152575748 @default.
- W4221016746 cites W2169384417 @default.
- W4221016746 cites W2169768310 @default.
- W4221016746 cites W2177066871 @default.
- W4221016746 cites W2474581600 @default.
- W4221016746 cites W2510850936 @default.
- W4221016746 cites W2535751405 @default.
- W4221016746 cites W2613480438 @default.
- W4221016746 cites W2743138268 @default.
- W4221016746 cites W2967917387 @default.
- W4221016746 cites W2985576076 @default.
- W4221016746 cites W3119498074 @default.
- W4221016746 cites W4240035482 @default.
- W4221016746 cites W818405431 @default.
- W4221016746 doi "https://doi.org/10.1080/00295450.2022.2027147" @default.
- W4221016746 hasPublicationYear "2022" @default.
- W4221016746 type Work @default.
- W4221016746 citedByCount "2" @default.
- W4221016746 countsByYear W42210167462022 @default.
- W4221016746 countsByYear W42210167462023 @default.
- W4221016746 crossrefType "journal-article" @default.
- W4221016746 hasAuthorship W4221016746A5006119928 @default.
- W4221016746 hasAuthorship W4221016746A5036628829 @default.
- W4221016746 hasAuthorship W4221016746A5050825869 @default.
- W4221016746 hasConcept C111919701 @default.
- W4221016746 hasConcept C11413529 @default.
- W4221016746 hasConcept C115961682 @default.
- W4221016746 hasConcept C119857082 @default.
- W4221016746 hasConcept C121332964 @default.
- W4221016746 hasConcept C124101348 @default.
- W4221016746 hasConcept C12997251 @default.
- W4221016746 hasConcept C153180895 @default.
- W4221016746 hasConcept C154945302 @default.
- W4221016746 hasConcept C163294075 @default.
- W4221016746 hasConcept C22789450 @default.
- W4221016746 hasConcept C26873012 @default.
- W4221016746 hasConcept C2779308522 @default.
- W4221016746 hasConcept C31972630 @default.
- W4221016746 hasConcept C35525427 @default.
- W4221016746 hasConcept C41008148 @default.
- W4221016746 hasConcept C739882 @default.
- W4221016746 hasConcept C98045186 @default.
- W4221016746 hasConcept C99498987 @default.
- W4221016746 hasConceptScore W4221016746C111919701 @default.
- W4221016746 hasConceptScore W4221016746C11413529 @default.
- W4221016746 hasConceptScore W4221016746C115961682 @default.
- W4221016746 hasConceptScore W4221016746C119857082 @default.
- W4221016746 hasConceptScore W4221016746C121332964 @default.
- W4221016746 hasConceptScore W4221016746C124101348 @default.
- W4221016746 hasConceptScore W4221016746C12997251 @default.
- W4221016746 hasConceptScore W4221016746C153180895 @default.
- W4221016746 hasConceptScore W4221016746C154945302 @default.
- W4221016746 hasConceptScore W4221016746C163294075 @default.
- W4221016746 hasConceptScore W4221016746C22789450 @default.
- W4221016746 hasConceptScore W4221016746C26873012 @default.
- W4221016746 hasConceptScore W4221016746C2779308522 @default.
- W4221016746 hasConceptScore W4221016746C31972630 @default.
- W4221016746 hasConceptScore W4221016746C35525427 @default.
- W4221016746 hasConceptScore W4221016746C41008148 @default.
- W4221016746 hasConceptScore W4221016746C739882 @default.
- W4221016746 hasConceptScore W4221016746C98045186 @default.
- W4221016746 hasConceptScore W4221016746C99498987 @default.
- W4221016746 hasIssue "9" @default.
- W4221016746 hasLocation W42210167461 @default.
- W4221016746 hasOpenAccess W4221016746 @default.
- W4221016746 hasPrimaryLocation W42210167461 @default.
- W4221016746 hasRelatedWork W1539704186 @default.
- W4221016746 hasRelatedWork W2286687623 @default.
- W4221016746 hasRelatedWork W2347632764 @default.
- W4221016746 hasRelatedWork W2353982255 @default.
- W4221016746 hasRelatedWork W2399890175 @default.
- W4221016746 hasRelatedWork W2480493049 @default.
- W4221016746 hasRelatedWork W3202479762 @default.