Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221021173> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4221021173 endingPage "104663" @default.
- W4221021173 startingPage "104663" @default.
- W4221021173 abstract "Reducing dimensionality is a key preprocessing step in many data analysis applications to address the negative effects of the curse of dimensionality and collinearity on model performance and computational complexity, to denoise the data or to reduce storage requirements. Moreover, in many applications it is desirable to reduce the input dimensions by choosing a subset of variables that best represents the entire set without any a priori information available. Unsupervised variable selection techniques provide a solution to this second problem. An autoencoder, if properly regularized, can solve both unsupervised dimensionality reduction and variable selection, but the training of large neural networks can be prohibitive in time sensitive applications. We present an approach called Recovery of Linear Components (RLC), which serves as a middle ground between linear and non-linear dimensionality reduction techniques, reducing autoencoder training times while enhancing performance over purely linear techniques. With the aid of synthetic and real world case studies, we show that the RLC, when compared with an autoencoder of similar complexity, shows higher accuracy, similar robustness to overfitting, and faster training times. Additionally, at the cost of a relatively small increase in computational complexity, RLC is shown to outperform the current state-of-the-art for a semiconductor manufacturing wafer measurement site optimization application." @default.
- W4221021173 created "2022-04-03" @default.
- W4221021173 creator A5005974306 @default.
- W4221021173 creator A5056113043 @default.
- W4221021173 date "2022-03-01" @default.
- W4221021173 modified "2023-09-25" @default.
- W4221021173 title "Recovery of linear components: Reduced complexity autoencoder designs" @default.
- W4221021173 cites W1575628899 @default.
- W4221021173 cites W1972266664 @default.
- W4221021173 cites W1987484735 @default.
- W4221021173 cites W2001619934 @default.
- W4221021173 cites W2005423095 @default.
- W4221021173 cites W2006170764 @default.
- W4221021173 cites W2022851810 @default.
- W4221021173 cites W2042970394 @default.
- W4221021173 cites W2061521613 @default.
- W4221021173 cites W2067752346 @default.
- W4221021173 cites W2085044339 @default.
- W4221021173 cites W2100495367 @default.
- W4221021173 cites W2105958467 @default.
- W4221021173 cites W2112796928 @default.
- W4221021173 cites W2114367267 @default.
- W4221021173 cites W2123921160 @default.
- W4221021173 cites W2136922672 @default.
- W4221021173 cites W2167999447 @default.
- W4221021173 cites W2248620004 @default.
- W4221021173 cites W2253609413 @default.
- W4221021173 cites W2316060816 @default.
- W4221021173 cites W2570571418 @default.
- W4221021173 cites W2604308885 @default.
- W4221021173 cites W2604452321 @default.
- W4221021173 cites W2748955005 @default.
- W4221021173 cites W2887361724 @default.
- W4221021173 cites W2919115771 @default.
- W4221021173 cites W2964833413 @default.
- W4221021173 cites W3126122061 @default.
- W4221021173 cites W3147719507 @default.
- W4221021173 cites W4237723258 @default.
- W4221021173 doi "https://doi.org/10.1016/j.engappai.2022.104663" @default.
- W4221021173 hasPublicationYear "2022" @default.
- W4221021173 type Work @default.
- W4221021173 citedByCount "2" @default.
- W4221021173 countsByYear W42210211732023 @default.
- W4221021173 crossrefType "journal-article" @default.
- W4221021173 hasAuthorship W4221021173A5005974306 @default.
- W4221021173 hasAuthorship W4221021173A5056113043 @default.
- W4221021173 hasBestOaLocation W42210211731 @default.
- W4221021173 hasConcept C101738243 @default.
- W4221021173 hasConcept C104317684 @default.
- W4221021173 hasConcept C111030470 @default.
- W4221021173 hasConcept C11413529 @default.
- W4221021173 hasConcept C119857082 @default.
- W4221021173 hasConcept C148483581 @default.
- W4221021173 hasConcept C154945302 @default.
- W4221021173 hasConcept C179799912 @default.
- W4221021173 hasConcept C185592680 @default.
- W4221021173 hasConcept C22019652 @default.
- W4221021173 hasConcept C41008148 @default.
- W4221021173 hasConcept C50644808 @default.
- W4221021173 hasConcept C55493867 @default.
- W4221021173 hasConcept C63479239 @default.
- W4221021173 hasConcept C70518039 @default.
- W4221021173 hasConceptScore W4221021173C101738243 @default.
- W4221021173 hasConceptScore W4221021173C104317684 @default.
- W4221021173 hasConceptScore W4221021173C111030470 @default.
- W4221021173 hasConceptScore W4221021173C11413529 @default.
- W4221021173 hasConceptScore W4221021173C119857082 @default.
- W4221021173 hasConceptScore W4221021173C148483581 @default.
- W4221021173 hasConceptScore W4221021173C154945302 @default.
- W4221021173 hasConceptScore W4221021173C179799912 @default.
- W4221021173 hasConceptScore W4221021173C185592680 @default.
- W4221021173 hasConceptScore W4221021173C22019652 @default.
- W4221021173 hasConceptScore W4221021173C41008148 @default.
- W4221021173 hasConceptScore W4221021173C50644808 @default.
- W4221021173 hasConceptScore W4221021173C55493867 @default.
- W4221021173 hasConceptScore W4221021173C63479239 @default.
- W4221021173 hasConceptScore W4221021173C70518039 @default.
- W4221021173 hasLocation W42210211731 @default.
- W4221021173 hasLocation W42210211732 @default.
- W4221021173 hasLocation W42210211733 @default.
- W4221021173 hasLocation W42210211734 @default.
- W4221021173 hasOpenAccess W4221021173 @default.
- W4221021173 hasPrimaryLocation W42210211731 @default.
- W4221021173 hasRelatedWork W2036439084 @default.
- W4221021173 hasRelatedWork W2522851758 @default.
- W4221021173 hasRelatedWork W2766433866 @default.
- W4221021173 hasRelatedWork W2978180439 @default.
- W4221021173 hasRelatedWork W2989932438 @default.
- W4221021173 hasRelatedWork W3099765033 @default.
- W4221021173 hasRelatedWork W3211529412 @default.
- W4221021173 hasRelatedWork W3211783303 @default.
- W4221021173 hasRelatedWork W4210794429 @default.
- W4221021173 hasRelatedWork W4380483555 @default.
- W4221021173 hasVolume "109" @default.
- W4221021173 isParatext "false" @default.
- W4221021173 isRetracted "false" @default.
- W4221021173 workType "article" @default.