Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221029042> ?p ?o ?g. }
- W4221029042 endingPage "1251" @default.
- W4221029042 startingPage "1251" @default.
- W4221029042 abstract "One of the problems of optical remote sensing of crop above-ground biomass (AGB) is that vegetation indices (VIs) often saturate from the middle to late growth stages. This study focuses on combining VIs acquired by a consumer-grade multiple-spectral UAV and machine learning regression techniques to (i) determine the optimal time window for AGB estimation of winter wheat and to (ii) determine the optimal combination of multi-spectral VIs and regression algorithms. UAV-based multi-spectral data and manually measured AGB of winter wheat, under five nitrogen rates, were obtained from the jointing stage until 25 days after flowering in the growing season 2020/2021. Forty-four multi-spectral VIs were used in the linear regression (LR), partial least squares regression (PLSR), and random forest (RF) models in this study. Results of LR models showed that the heading stage was the most suitable stage for AGB prediction, with R2 values varying from 0.48 to 0.93. Three PLSR models based on different datasets performed differently in estimating AGB in the training dataset (R2 = 0.74~0.92, RMSE = 0.95~2.87 t/ha, MAE = 0.75~2.18 t/ha, and RPD = 2.00~3.67) and validation dataset (R2 = 0.50~0.75, RMSE = 1.56~2.57 t/ha, MAE = 1.44~2.05 t/ha, RPD = 1.45~1.89). Compared with PLSR models, the performance of the RF models was more stable in the prediction of AGB in the training dataset (R2 = 0.95~0.97, RMSE = 0.58~1.08 t/ha, MAE = 0.46~0.89 t/ha, and RPD = 3.95~6.35) and validation dataset (R2 = 0.83~0.93, RMSE = 0.93~2.34 t/ha, MAE = 0.72~2.01 t/ha, RPD = 1.36~3.79). Monitoring AGB prior to flowering was found to be more effective than post-flowering. Moreover, this study demonstrates that it is feasible to estimate AGB for multiple growth stages of winter wheat by combining the optimal VIs and PLSR and RF models, which overcomes the saturation problem of using individual VI-based linear regression models." @default.
- W4221029042 created "2022-04-03" @default.
- W4221029042 creator A5005228021 @default.
- W4221029042 creator A5013545506 @default.
- W4221029042 creator A5017009332 @default.
- W4221029042 creator A5020644908 @default.
- W4221029042 creator A5021902952 @default.
- W4221029042 creator A5037709424 @default.
- W4221029042 creator A5043479748 @default.
- W4221029042 creator A5049222684 @default.
- W4221029042 creator A5058161374 @default.
- W4221029042 creator A5085512975 @default.
- W4221029042 creator A5089202381 @default.
- W4221029042 date "2022-03-04" @default.
- W4221029042 modified "2023-10-18" @default.
- W4221029042 title "Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV" @default.
- W4221029042 cites W1487726742 @default.
- W4221029042 cites W1541175366 @default.
- W4221029042 cites W1915015852 @default.
- W4221029042 cites W1964050442 @default.
- W4221029042 cites W1964217023 @default.
- W4221029042 cites W1965106709 @default.
- W4221029042 cites W1966123034 @default.
- W4221029042 cites W1974432552 @default.
- W4221029042 cites W1975916124 @default.
- W4221029042 cites W1981739091 @default.
- W4221029042 cites W1987997875 @default.
- W4221029042 cites W1988879009 @default.
- W4221029042 cites W2000659524 @default.
- W4221029042 cites W2002610435 @default.
- W4221029042 cites W2012686349 @default.
- W4221029042 cites W2019967662 @default.
- W4221029042 cites W2020512245 @default.
- W4221029042 cites W2024585152 @default.
- W4221029042 cites W2025757188 @default.
- W4221029042 cites W2025967407 @default.
- W4221029042 cites W2026419130 @default.
- W4221029042 cites W2029118156 @default.
- W4221029042 cites W2035902794 @default.
- W4221029042 cites W2036003376 @default.
- W4221029042 cites W2036259807 @default.
- W4221029042 cites W2039714157 @default.
- W4221029042 cites W2045102154 @default.
- W4221029042 cites W2046292468 @default.
- W4221029042 cites W2049556619 @default.
- W4221029042 cites W2051128904 @default.
- W4221029042 cites W2052700773 @default.
- W4221029042 cites W2056352756 @default.
- W4221029042 cites W2060426168 @default.
- W4221029042 cites W2063623478 @default.
- W4221029042 cites W2064417027 @default.
- W4221029042 cites W2064636932 @default.
- W4221029042 cites W2070047344 @default.
- W4221029042 cites W2070598848 @default.
- W4221029042 cites W2073503722 @default.
- W4221029042 cites W2078996926 @default.
- W4221029042 cites W2081728108 @default.
- W4221029042 cites W2084733540 @default.
- W4221029042 cites W2088304553 @default.
- W4221029042 cites W2089101419 @default.
- W4221029042 cites W2093028210 @default.
- W4221029042 cites W2094677081 @default.
- W4221029042 cites W2101533953 @default.
- W4221029042 cites W2111947859 @default.
- W4221029042 cites W2113410727 @default.
- W4221029042 cites W2128438912 @default.
- W4221029042 cites W2133506218 @default.
- W4221029042 cites W2139925058 @default.
- W4221029042 cites W2140959043 @default.
- W4221029042 cites W2144559754 @default.
- W4221029042 cites W2151880387 @default.
- W4221029042 cites W2159961845 @default.
- W4221029042 cites W2161815745 @default.
- W4221029042 cites W2163410149 @default.
- W4221029042 cites W2166516660 @default.
- W4221029042 cites W2167249875 @default.
- W4221029042 cites W2212980623 @default.
- W4221029042 cites W2233456439 @default.
- W4221029042 cites W2296479879 @default.
- W4221029042 cites W2609044008 @default.
- W4221029042 cites W2736116482 @default.
- W4221029042 cites W2784201940 @default.
- W4221029042 cites W2788427747 @default.
- W4221029042 cites W2802213910 @default.
- W4221029042 cites W2803133125 @default.
- W4221029042 cites W2804971462 @default.
- W4221029042 cites W2884438462 @default.
- W4221029042 cites W2891621712 @default.
- W4221029042 cites W2901420733 @default.
- W4221029042 cites W2903422738 @default.
- W4221029042 cites W2911964244 @default.
- W4221029042 cites W2914498877 @default.
- W4221029042 cites W2918084323 @default.
- W4221029042 cites W2920653747 @default.
- W4221029042 cites W2930102931 @default.
- W4221029042 cites W2933596302 @default.
- W4221029042 cites W2936348993 @default.
- W4221029042 cites W2937353161 @default.