Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221031036> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4221031036 endingPage "770" @default.
- W4221031036 startingPage "764" @default.
- W4221031036 abstract "The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model) using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID19 patients. During the model training stage, we will try to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model." @default.
- W4221031036 created "2022-04-03" @default.
- W4221031036 creator A5011605940 @default.
- W4221031036 creator A5014861617 @default.
- W4221031036 creator A5024824825 @default.
- W4221031036 creator A5043572620 @default.
- W4221031036 creator A5052518603 @default.
- W4221031036 creator A5091226550 @default.
- W4221031036 date "2022-03-26" @default.
- W4221031036 modified "2023-09-25" @default.
- W4221031036 title "Covid-19 Detection Using Machine Learning and Deep Learning" @default.
- W4221031036 cites W1583031633 @default.
- W4221031036 cites W2286543281 @default.
- W4221031036 cites W2370924594 @default.
- W4221031036 cites W2912213068 @default.
- W4221031036 cites W3012877162 @default.
- W4221031036 cites W3048517770 @default.
- W4221031036 cites W3086039674 @default.
- W4221031036 cites W3127299377 @default.
- W4221031036 cites W3158590963 @default.
- W4221031036 cites W4206246915 @default.
- W4221031036 doi "https://doi.org/10.48175/ijarsct-2951" @default.
- W4221031036 hasPublicationYear "2022" @default.
- W4221031036 type Work @default.
- W4221031036 citedByCount "0" @default.
- W4221031036 crossrefType "journal-article" @default.
- W4221031036 hasAuthorship W4221031036A5011605940 @default.
- W4221031036 hasAuthorship W4221031036A5014861617 @default.
- W4221031036 hasAuthorship W4221031036A5024824825 @default.
- W4221031036 hasAuthorship W4221031036A5043572620 @default.
- W4221031036 hasAuthorship W4221031036A5052518603 @default.
- W4221031036 hasAuthorship W4221031036A5091226550 @default.
- W4221031036 hasBestOaLocation W42210310361 @default.
- W4221031036 hasConcept C108583219 @default.
- W4221031036 hasConcept C11413529 @default.
- W4221031036 hasConcept C119857082 @default.
- W4221031036 hasConcept C142724271 @default.
- W4221031036 hasConcept C154945302 @default.
- W4221031036 hasConcept C188441871 @default.
- W4221031036 hasConcept C2779134260 @default.
- W4221031036 hasConcept C3008058167 @default.
- W4221031036 hasConcept C41008148 @default.
- W4221031036 hasConcept C45374587 @default.
- W4221031036 hasConcept C45804977 @default.
- W4221031036 hasConcept C524204448 @default.
- W4221031036 hasConcept C71924100 @default.
- W4221031036 hasConceptScore W4221031036C108583219 @default.
- W4221031036 hasConceptScore W4221031036C11413529 @default.
- W4221031036 hasConceptScore W4221031036C119857082 @default.
- W4221031036 hasConceptScore W4221031036C142724271 @default.
- W4221031036 hasConceptScore W4221031036C154945302 @default.
- W4221031036 hasConceptScore W4221031036C188441871 @default.
- W4221031036 hasConceptScore W4221031036C2779134260 @default.
- W4221031036 hasConceptScore W4221031036C3008058167 @default.
- W4221031036 hasConceptScore W4221031036C41008148 @default.
- W4221031036 hasConceptScore W4221031036C45374587 @default.
- W4221031036 hasConceptScore W4221031036C45804977 @default.
- W4221031036 hasConceptScore W4221031036C524204448 @default.
- W4221031036 hasConceptScore W4221031036C71924100 @default.
- W4221031036 hasLocation W42210310361 @default.
- W4221031036 hasOpenAccess W4221031036 @default.
- W4221031036 hasPrimaryLocation W42210310361 @default.
- W4221031036 hasRelatedWork W3014300295 @default.
- W4221031036 hasRelatedWork W3164822677 @default.
- W4221031036 hasRelatedWork W4223943233 @default.
- W4221031036 hasRelatedWork W4225161397 @default.
- W4221031036 hasRelatedWork W4300427424 @default.
- W4221031036 hasRelatedWork W4312200629 @default.
- W4221031036 hasRelatedWork W4360585206 @default.
- W4221031036 hasRelatedWork W4364306694 @default.
- W4221031036 hasRelatedWork W4380075502 @default.
- W4221031036 hasRelatedWork W4380086463 @default.
- W4221031036 isParatext "false" @default.
- W4221031036 isRetracted "false" @default.
- W4221031036 workType "article" @default.