Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221032020> ?p ?o ?g. }
- W4221032020 abstract "Abstract With the development of energy harvesting technologies and smart grid, the future trend of radio access networks will present a multi‐source power supply. In this article, joint renewable energy cooperation and resource allocation scheme of the fog radio access networks (F‐RANs) with hybrid power supplies (including both the conventional grid and renewable energy sources) is studied. In this article, our objective is to maximize the average throughput of F‐RAN architecture with hybrid energy sources while satisfying the constraints of signal to noise ratio (SNR), available bandwidth, and energy harvesting. To solve this problem, the dynamic power allocation scheme in the network is studied by using Q‐learning and Deep Q Network respectively. Simulation results show that the proposed two algorithms have low complexity and can improve the average throughput of the whole network compared with other traditional algorithms." @default.
- W4221032020 created "2022-04-03" @default.
- W4221032020 creator A5014084684 @default.
- W4221032020 creator A5084608952 @default.
- W4221032020 date "2022-03-11" @default.
- W4221032020 modified "2023-10-16" @default.
- W4221032020 title "Resource allocation of fog radio access network based on deep reinforcement learning" @default.
- W4221032020 cites W1788288079 @default.
- W4221032020 cites W1794490453 @default.
- W4221032020 cites W1966000877 @default.
- W4221032020 cites W1978842364 @default.
- W4221032020 cites W2019905317 @default.
- W4221032020 cites W2064969374 @default.
- W4221032020 cites W2111505049 @default.
- W4221032020 cites W2118588134 @default.
- W4221032020 cites W2120176900 @default.
- W4221032020 cites W2381074797 @default.
- W4221032020 cites W2400861403 @default.
- W4221032020 cites W2508764403 @default.
- W4221032020 cites W2513101600 @default.
- W4221032020 cites W2518017861 @default.
- W4221032020 cites W2566935729 @default.
- W4221032020 cites W2595217078 @default.
- W4221032020 cites W2605868208 @default.
- W4221032020 cites W2606850368 @default.
- W4221032020 cites W2769394227 @default.
- W4221032020 cites W2793607270 @default.
- W4221032020 cites W2793914140 @default.
- W4221032020 cites W2795680747 @default.
- W4221032020 cites W2818984396 @default.
- W4221032020 cites W2883785482 @default.
- W4221032020 cites W2916520685 @default.
- W4221032020 cites W2928112504 @default.
- W4221032020 cites W2931555660 @default.
- W4221032020 cites W2948674973 @default.
- W4221032020 cites W2949081128 @default.
- W4221032020 cites W2962709657 @default.
- W4221032020 cites W2963079995 @default.
- W4221032020 cites W2963652759 @default.
- W4221032020 cites W2964271679 @default.
- W4221032020 cites W2991389796 @default.
- W4221032020 cites W2998524244 @default.
- W4221032020 cites W3091990474 @default.
- W4221032020 cites W3095933406 @default.
- W4221032020 cites W3096167758 @default.
- W4221032020 cites W3111550663 @default.
- W4221032020 cites W3131720274 @default.
- W4221032020 doi "https://doi.org/10.1002/eng2.12497" @default.
- W4221032020 hasPublicationYear "2022" @default.
- W4221032020 type Work @default.
- W4221032020 citedByCount "8" @default.
- W4221032020 countsByYear W42210320202023 @default.
- W4221032020 crossrefType "journal-article" @default.
- W4221032020 hasAuthorship W4221032020A5014084684 @default.
- W4221032020 hasAuthorship W4221032020A5084608952 @default.
- W4221032020 hasBestOaLocation W42210320201 @default.
- W4221032020 hasConcept C10558101 @default.
- W4221032020 hasConcept C106365562 @default.
- W4221032020 hasConcept C119599485 @default.
- W4221032020 hasConcept C120314980 @default.
- W4221032020 hasConcept C127413603 @default.
- W4221032020 hasConcept C154945302 @default.
- W4221032020 hasConcept C157764524 @default.
- W4221032020 hasConcept C187691185 @default.
- W4221032020 hasConcept C188573790 @default.
- W4221032020 hasConcept C207029474 @default.
- W4221032020 hasConcept C2524010 @default.
- W4221032020 hasConcept C2776257435 @default.
- W4221032020 hasConcept C29202148 @default.
- W4221032020 hasConcept C31258907 @default.
- W4221032020 hasConcept C33923547 @default.
- W4221032020 hasConcept C41008148 @default.
- W4221032020 hasConcept C555944384 @default.
- W4221032020 hasConcept C62793504 @default.
- W4221032020 hasConcept C68649174 @default.
- W4221032020 hasConcept C76155785 @default.
- W4221032020 hasConcept C97541855 @default.
- W4221032020 hasConceptScore W4221032020C10558101 @default.
- W4221032020 hasConceptScore W4221032020C106365562 @default.
- W4221032020 hasConceptScore W4221032020C119599485 @default.
- W4221032020 hasConceptScore W4221032020C120314980 @default.
- W4221032020 hasConceptScore W4221032020C127413603 @default.
- W4221032020 hasConceptScore W4221032020C154945302 @default.
- W4221032020 hasConceptScore W4221032020C157764524 @default.
- W4221032020 hasConceptScore W4221032020C187691185 @default.
- W4221032020 hasConceptScore W4221032020C188573790 @default.
- W4221032020 hasConceptScore W4221032020C207029474 @default.
- W4221032020 hasConceptScore W4221032020C2524010 @default.
- W4221032020 hasConceptScore W4221032020C2776257435 @default.
- W4221032020 hasConceptScore W4221032020C29202148 @default.
- W4221032020 hasConceptScore W4221032020C31258907 @default.
- W4221032020 hasConceptScore W4221032020C33923547 @default.
- W4221032020 hasConceptScore W4221032020C41008148 @default.
- W4221032020 hasConceptScore W4221032020C555944384 @default.
- W4221032020 hasConceptScore W4221032020C62793504 @default.
- W4221032020 hasConceptScore W4221032020C68649174 @default.
- W4221032020 hasConceptScore W4221032020C76155785 @default.
- W4221032020 hasConceptScore W4221032020C97541855 @default.
- W4221032020 hasIssue "5" @default.
- W4221032020 hasLocation W42210320201 @default.