Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221034309> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4221034309 abstract "Lung segmentation in dynamic thoracic magnetic resonance imaging (dMRI) is a critical step for quantitative analysis of thoracic structure and function in patients with respiratory disorders. Some semi-automatic and automatic lung segmentation methods based on traditional image processing models have been proposed mainly for CT with good performance. However, the low efficiency and robustness of these methods and inapplicability to dMRI make them unsuitable to segment the large numbers of dMRI datasets. In this paper, we present a novel automatic lung segmentation approach for dMRI based on two-stage convolutional neural networks (CNNs). In the first stage, we utilize the modified min-max normalization method to pre-process MRI for increasing the contrast between the lung and surrounding tissue and propose a corner-points and CNN based region of interest (ROI) detection strategy to extract the lung ROI from sagittal dMRI slices, which can reduce the negative influence of tissues located far away from the lung. In the second stage, we input the adjacent ROIs of target slices into the modified 2D U-Net to segment the lung tissue. The qualitative and quantitative results demonstrate that our approach achieves high accuracy and stability in terms of lung segmentation for dMRI." @default.
- W4221034309 created "2022-04-03" @default.
- W4221034309 creator A5008484635 @default.
- W4221034309 creator A5017467779 @default.
- W4221034309 creator A5026804587 @default.
- W4221034309 creator A5033937011 @default.
- W4221034309 creator A5060745388 @default.
- W4221034309 creator A5065713856 @default.
- W4221034309 creator A5071253247 @default.
- W4221034309 creator A5080030813 @default.
- W4221034309 creator A5082511067 @default.
- W4221034309 date "2022-04-04" @default.
- W4221034309 modified "2023-09-26" @default.
- W4221034309 title "Automatic lung segmentation in dynamic thoracic MRI using two-stage deep convolutional neural networks" @default.
- W4221034309 cites W1964312278 @default.
- W4221034309 cites W2005322699 @default.
- W4221034309 cites W2041891764 @default.
- W4221034309 cites W2064114248 @default.
- W4221034309 cites W2108503957 @default.
- W4221034309 cites W2154158661 @default.
- W4221034309 cites W2596326132 @default.
- W4221034309 cites W2789406075 @default.
- W4221034309 cites W2945442984 @default.
- W4221034309 cites W3047481537 @default.
- W4221034309 cites W3130463656 @default.
- W4221034309 doi "https://doi.org/10.1117/12.2612558" @default.
- W4221034309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36865001" @default.
- W4221034309 hasPublicationYear "2022" @default.
- W4221034309 type Work @default.
- W4221034309 citedByCount "1" @default.
- W4221034309 countsByYear W42210343092023 @default.
- W4221034309 crossrefType "proceedings-article" @default.
- W4221034309 hasAuthorship W4221034309A5008484635 @default.
- W4221034309 hasAuthorship W4221034309A5017467779 @default.
- W4221034309 hasAuthorship W4221034309A5026804587 @default.
- W4221034309 hasAuthorship W4221034309A5033937011 @default.
- W4221034309 hasAuthorship W4221034309A5060745388 @default.
- W4221034309 hasAuthorship W4221034309A5065713856 @default.
- W4221034309 hasAuthorship W4221034309A5071253247 @default.
- W4221034309 hasAuthorship W4221034309A5080030813 @default.
- W4221034309 hasAuthorship W4221034309A5082511067 @default.
- W4221034309 hasBestOaLocation W42210343092 @default.
- W4221034309 hasConcept C104317684 @default.
- W4221034309 hasConcept C124504099 @default.
- W4221034309 hasConcept C126838900 @default.
- W4221034309 hasConcept C136886441 @default.
- W4221034309 hasConcept C143409427 @default.
- W4221034309 hasConcept C144024400 @default.
- W4221034309 hasConcept C153180895 @default.
- W4221034309 hasConcept C154945302 @default.
- W4221034309 hasConcept C185592680 @default.
- W4221034309 hasConcept C19165224 @default.
- W4221034309 hasConcept C19609008 @default.
- W4221034309 hasConcept C31972630 @default.
- W4221034309 hasConcept C41008148 @default.
- W4221034309 hasConcept C55493867 @default.
- W4221034309 hasConcept C63479239 @default.
- W4221034309 hasConcept C71924100 @default.
- W4221034309 hasConcept C81363708 @default.
- W4221034309 hasConcept C89600930 @default.
- W4221034309 hasConceptScore W4221034309C104317684 @default.
- W4221034309 hasConceptScore W4221034309C124504099 @default.
- W4221034309 hasConceptScore W4221034309C126838900 @default.
- W4221034309 hasConceptScore W4221034309C136886441 @default.
- W4221034309 hasConceptScore W4221034309C143409427 @default.
- W4221034309 hasConceptScore W4221034309C144024400 @default.
- W4221034309 hasConceptScore W4221034309C153180895 @default.
- W4221034309 hasConceptScore W4221034309C154945302 @default.
- W4221034309 hasConceptScore W4221034309C185592680 @default.
- W4221034309 hasConceptScore W4221034309C19165224 @default.
- W4221034309 hasConceptScore W4221034309C19609008 @default.
- W4221034309 hasConceptScore W4221034309C31972630 @default.
- W4221034309 hasConceptScore W4221034309C41008148 @default.
- W4221034309 hasConceptScore W4221034309C55493867 @default.
- W4221034309 hasConceptScore W4221034309C63479239 @default.
- W4221034309 hasConceptScore W4221034309C71924100 @default.
- W4221034309 hasConceptScore W4221034309C81363708 @default.
- W4221034309 hasConceptScore W4221034309C89600930 @default.
- W4221034309 hasLocation W42210343091 @default.
- W4221034309 hasLocation W42210343092 @default.
- W4221034309 hasLocation W42210343093 @default.
- W4221034309 hasOpenAccess W4221034309 @default.
- W4221034309 hasPrimaryLocation W42210343091 @default.
- W4221034309 hasRelatedWork W1669643531 @default.
- W4221034309 hasRelatedWork W2005437358 @default.
- W4221034309 hasRelatedWork W2008656436 @default.
- W4221034309 hasRelatedWork W2023558673 @default.
- W4221034309 hasRelatedWork W2035976912 @default.
- W4221034309 hasRelatedWork W2134924024 @default.
- W4221034309 hasRelatedWork W2517104666 @default.
- W4221034309 hasRelatedWork W2533072256 @default.
- W4221034309 hasRelatedWork W2541791370 @default.
- W4221034309 hasRelatedWork W4385415357 @default.
- W4221034309 isParatext "false" @default.
- W4221034309 isRetracted "false" @default.
- W4221034309 workType "article" @default.