Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221036300> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4221036300 endingPage "103641" @default.
- W4221036300 startingPage "103641" @default.
- W4221036300 abstract "Segmentation of ultrasound guidance images (UGIs) is a critical step in ultrasound-guided high intensity focused ultrasound (HIFU) therapy. However, the low signal-to-noise ratio characteristic of UGIs makes it difficult to acquire enough annotations. This paper proposes a novel genetic programming-based approach to achieve automatic construction of an image filter tree (IFT) for UGI segmentation since genetic programming has a natural advantage in training on small datasets. In the new approach, a set of predefined functions are adapted with better anti-noise performance to deal with noise interference. Moreover, a position-determined function is designed for incorporating preoperative information in each IFT to form a closed-loop system thereby facilitating the segmentation process. The optimal IFT evolved by genetic programming, along with a preprocessing step and a postprocessing step, constructs the pipeline for the segmentation of UGIs. The quantitative evaluation of the segmentation results shows the mean true positive rate, the mean false positive rate, the mean intersection over union, the mean norm Hausdorff distance and the mean norm maximum average distance are found to be 94.86%, 6.72%, 89.14%, 3.20% and 0.83%, respectively, outperforming the popular convolutional neural network-based segmentation methods. The segmentation results reveal that the evolved IFT can achieve accurate segmentation of UGIs and indicate that the proposed approach can be a promising option for medical image segmentation when there are only a few training samples available." @default.
- W4221036300 created "2022-04-03" @default.
- W4221036300 creator A5058712185 @default.
- W4221036300 creator A5062793516 @default.
- W4221036300 creator A5065722091 @default.
- W4221036300 creator A5068951317 @default.
- W4221036300 date "2022-07-01" @default.
- W4221036300 modified "2023-09-26" @default.
- W4221036300 title "Automatic construction of filter tree by genetic programming for ultrasound guidance image segmentation" @default.
- W4221036300 cites W1493267539 @default.
- W4221036300 cites W1513670756 @default.
- W4221036300 cites W1527151869 @default.
- W4221036300 cites W2012743205 @default.
- W4221036300 cites W2060574257 @default.
- W4221036300 cites W2061708264 @default.
- W4221036300 cites W2070252766 @default.
- W4221036300 cites W2070594411 @default.
- W4221036300 cites W2074620982 @default.
- W4221036300 cites W2077606434 @default.
- W4221036300 cites W2085279201 @default.
- W4221036300 cites W2104377141 @default.
- W4221036300 cites W2108928796 @default.
- W4221036300 cites W2112467442 @default.
- W4221036300 cites W2115554516 @default.
- W4221036300 cites W2116040950 @default.
- W4221036300 cites W2145023731 @default.
- W4221036300 cites W2253429366 @default.
- W4221036300 cites W2290590489 @default.
- W4221036300 cites W2404179621 @default.
- W4221036300 cites W2571079985 @default.
- W4221036300 cites W2572512422 @default.
- W4221036300 cites W2805022447 @default.
- W4221036300 cites W2901236396 @default.
- W4221036300 cites W2954996726 @default.
- W4221036300 cites W2962767316 @default.
- W4221036300 cites W2963104294 @default.
- W4221036300 cites W2998905995 @default.
- W4221036300 cites W3003566741 @default.
- W4221036300 cites W3012109984 @default.
- W4221036300 cites W3036020790 @default.
- W4221036300 cites W3203023387 @default.
- W4221036300 cites W3204011032 @default.
- W4221036300 doi "https://doi.org/10.1016/j.bspc.2022.103641" @default.
- W4221036300 hasPublicationYear "2022" @default.
- W4221036300 type Work @default.
- W4221036300 citedByCount "2" @default.
- W4221036300 countsByYear W42210363002022 @default.
- W4221036300 countsByYear W42210363002023 @default.
- W4221036300 crossrefType "journal-article" @default.
- W4221036300 hasAuthorship W4221036300A5058712185 @default.
- W4221036300 hasAuthorship W4221036300A5062793516 @default.
- W4221036300 hasAuthorship W4221036300A5065722091 @default.
- W4221036300 hasAuthorship W4221036300A5068951317 @default.
- W4221036300 hasConcept C115961682 @default.
- W4221036300 hasConcept C124504099 @default.
- W4221036300 hasConcept C153180895 @default.
- W4221036300 hasConcept C154945302 @default.
- W4221036300 hasConcept C180940675 @default.
- W4221036300 hasConcept C31972630 @default.
- W4221036300 hasConcept C34736171 @default.
- W4221036300 hasConcept C41008148 @default.
- W4221036300 hasConcept C89600930 @default.
- W4221036300 hasConceptScore W4221036300C115961682 @default.
- W4221036300 hasConceptScore W4221036300C124504099 @default.
- W4221036300 hasConceptScore W4221036300C153180895 @default.
- W4221036300 hasConceptScore W4221036300C154945302 @default.
- W4221036300 hasConceptScore W4221036300C180940675 @default.
- W4221036300 hasConceptScore W4221036300C31972630 @default.
- W4221036300 hasConceptScore W4221036300C34736171 @default.
- W4221036300 hasConceptScore W4221036300C41008148 @default.
- W4221036300 hasConceptScore W4221036300C89600930 @default.
- W4221036300 hasLocation W42210363001 @default.
- W4221036300 hasOpenAccess W4221036300 @default.
- W4221036300 hasPrimaryLocation W42210363001 @default.
- W4221036300 hasRelatedWork W1507266234 @default.
- W4221036300 hasRelatedWork W1669643531 @default.
- W4221036300 hasRelatedWork W2036075313 @default.
- W4221036300 hasRelatedWork W2110230079 @default.
- W4221036300 hasRelatedWork W2117664411 @default.
- W4221036300 hasRelatedWork W2117933325 @default.
- W4221036300 hasRelatedWork W2122581818 @default.
- W4221036300 hasRelatedWork W2159066190 @default.
- W4221036300 hasRelatedWork W3006377637 @default.
- W4221036300 hasRelatedWork W1967061043 @default.
- W4221036300 hasVolume "76" @default.
- W4221036300 isParatext "false" @default.
- W4221036300 isRetracted "false" @default.
- W4221036300 workType "article" @default.