Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221036303> ?p ?o ?g. }
- W4221036303 endingPage "e13064" @default.
- W4221036303 startingPage "e13064" @default.
- W4221036303 abstract "Adding tank-mix adjuvants into the spray mixture is a common practice to improve droplet distribution for field crops (e.g., rice, wheat, corn, etc.) when using Unmanned Aerial Vehicle (UAV) sprayers. However, the effectiveness of tank-mix adjuvant for UAV spraying in orchard crops is still an open problem, considering their special canopy structure and leaf features. This study aims to evaluate the effects of a typical tank-mix adjuvant concentrations (i.e., Nong Jian Fei (NJF)) on Contact Angle (CA) and droplet distribution in the citrus tree canopy. Three commonly used parameters, namely dynamic CA, droplet coverage, and Volume Median Diameter (VMD), are adopted for performance evaluation. The dynamic CAs on the adaxial surface of citrus leaves, for water-only and NJF-presence sprays, respectively, are measured with five concentration levels, where three replications are performed for each concentration. The sprays with 0.5‰ NJF are adopted in the field experiment for evaluating droplet distributions, where Water Sensitive Papers (WSPs) are used as collectors. Two multi-rotor UAVs (DJI T20 and T30) which consist of different sizes of pesticide tanks and rotor diameters are used as the spraying platforms. Both water-only and NJF-presence treatments are conducted for the two UAVs, respectively. The results of the CA experiment show that NJF addition can significantly reduce the CAs of the sprays. The sprays with 0.5‰ NJF obtain the lowest CA within the observing time, suggesting a better spread ability on solid surface (e.g., WSPs or/and leaves). With respect to the effects of NJF addition on individual UAVs, the field trial results indicate that NJF addition can remarkably increase both the droplet coverage and VMD at three canopy layers, except for T30 droplet coverage of the inside and bottom layers. Comparing the difference of droplet coverage between two UAVs, while significant difference is found in the same layer before NJF addition, there is no notable difference appearing in the outside and bottom layers after NJF addition. The difference of VMD in the same layer between two UAVs is not affected by NJF addition except for the bottom layer. These results imply that the differences of droplet coverage among different UAVs might be mitigated, thus the droplet distribution of some UAVs could be improved by adding a tank-mix adjuvant into the sprays. This hypothesis is verified by investigating the droplet penetration and the correlation coefficient (CC) of droplet coverage and VMD. After NJF addition, the total percentage of T20 droplet coverage in the bottom and inside layers is increased by 5%. For both UAVs, the CCs indicate that both droplet coverage and VMD increase at the same time in most cases after NJF addition. In conclusion, the addition of a tank-mix adjuvant with the ability to reduce CA of the sprays, can effectively improve droplet distribution using UAV spraying in the citrus canopy by increasing droplet coverage and VMD." @default.
- W4221036303 created "2022-04-03" @default.
- W4221036303 creator A5001081849 @default.
- W4221036303 creator A5012198191 @default.
- W4221036303 creator A5012797389 @default.
- W4221036303 creator A5021774274 @default.
- W4221036303 creator A5039324531 @default.
- W4221036303 creator A5062673749 @default.
- W4221036303 creator A5069796893 @default.
- W4221036303 creator A5071192714 @default.
- W4221036303 date "2022-03-11" @default.
- W4221036303 modified "2023-09-30" @default.
- W4221036303 title "UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution" @default.
- W4221036303 cites W1778742698 @default.
- W4221036303 cites W1983749954 @default.
- W4221036303 cites W1984335538 @default.
- W4221036303 cites W2041811542 @default.
- W4221036303 cites W2073080179 @default.
- W4221036303 cites W2136083882 @default.
- W4221036303 cites W2159348881 @default.
- W4221036303 cites W2202505673 @default.
- W4221036303 cites W2541559169 @default.
- W4221036303 cites W2553834648 @default.
- W4221036303 cites W2606867987 @default.
- W4221036303 cites W2619010903 @default.
- W4221036303 cites W2766995909 @default.
- W4221036303 cites W2792549338 @default.
- W4221036303 cites W2863672112 @default.
- W4221036303 cites W2894444593 @default.
- W4221036303 cites W2900353762 @default.
- W4221036303 cites W2908598883 @default.
- W4221036303 cites W2912422450 @default.
- W4221036303 cites W2940856955 @default.
- W4221036303 cites W2942855932 @default.
- W4221036303 cites W2944686364 @default.
- W4221036303 cites W2949197842 @default.
- W4221036303 cites W2950683678 @default.
- W4221036303 cites W2962765391 @default.
- W4221036303 cites W2964693382 @default.
- W4221036303 cites W2966657623 @default.
- W4221036303 cites W2972591998 @default.
- W4221036303 cites W2975988405 @default.
- W4221036303 cites W3003616049 @default.
- W4221036303 cites W3004597068 @default.
- W4221036303 cites W3005863531 @default.
- W4221036303 cites W3015695014 @default.
- W4221036303 cites W3021793138 @default.
- W4221036303 cites W3034104316 @default.
- W4221036303 cites W3080802851 @default.
- W4221036303 cites W3100131476 @default.
- W4221036303 cites W3157417072 @default.
- W4221036303 cites W3160663892 @default.
- W4221036303 cites W3162680124 @default.
- W4221036303 cites W3163593447 @default.
- W4221036303 cites W3169384756 @default.
- W4221036303 cites W4230419440 @default.
- W4221036303 cites W4231648371 @default.
- W4221036303 cites W4235971327 @default.
- W4221036303 cites W4249493285 @default.
- W4221036303 cites W4252448748 @default.
- W4221036303 doi "https://doi.org/10.7717/peerj.13064" @default.
- W4221036303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35295557" @default.
- W4221036303 hasPublicationYear "2022" @default.
- W4221036303 type Work @default.
- W4221036303 citedByCount "6" @default.
- W4221036303 countsByYear W42210363032022 @default.
- W4221036303 countsByYear W42210363032023 @default.
- W4221036303 crossrefType "journal-article" @default.
- W4221036303 hasAuthorship W4221036303A5001081849 @default.
- W4221036303 hasAuthorship W4221036303A5012198191 @default.
- W4221036303 hasAuthorship W4221036303A5012797389 @default.
- W4221036303 hasAuthorship W4221036303A5021774274 @default.
- W4221036303 hasAuthorship W4221036303A5039324531 @default.
- W4221036303 hasAuthorship W4221036303A5062673749 @default.
- W4221036303 hasAuthorship W4221036303A5069796893 @default.
- W4221036303 hasAuthorship W4221036303A5071192714 @default.
- W4221036303 hasBestOaLocation W42210363031 @default.
- W4221036303 hasConcept C101000010 @default.
- W4221036303 hasConcept C127413603 @default.
- W4221036303 hasConcept C137580998 @default.
- W4221036303 hasConcept C144027150 @default.
- W4221036303 hasConcept C159985019 @default.
- W4221036303 hasConcept C192562407 @default.
- W4221036303 hasConcept C2780753983 @default.
- W4221036303 hasConcept C39432304 @default.
- W4221036303 hasConcept C528095902 @default.
- W4221036303 hasConcept C59822182 @default.
- W4221036303 hasConcept C6556556 @default.
- W4221036303 hasConcept C6557445 @default.
- W4221036303 hasConcept C86803240 @default.
- W4221036303 hasConceptScore W4221036303C101000010 @default.
- W4221036303 hasConceptScore W4221036303C127413603 @default.
- W4221036303 hasConceptScore W4221036303C137580998 @default.
- W4221036303 hasConceptScore W4221036303C144027150 @default.
- W4221036303 hasConceptScore W4221036303C159985019 @default.
- W4221036303 hasConceptScore W4221036303C192562407 @default.
- W4221036303 hasConceptScore W4221036303C2780753983 @default.
- W4221036303 hasConceptScore W4221036303C39432304 @default.