Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221038421> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4221038421 endingPage "e0263897" @default.
- W4221038421 startingPage "e0263897" @default.
- W4221038421 abstract "Background Predictive models could help clinicians identify risk factors that cause adverse events after total knee arthroplasty (TKA), allowing for appropriate preoperative preventive interventions and allocation of resources. Methods The National Inpatient Sample datasets from 2010–2014 were used to build Logistic Regression (LR), Gradient Boosting Method (GBM), Random Forest (RF), and Artificial Neural Network (ANN) predictive models for three clinically relevant outcomes after TKA—disposition at discharge, any post-surgical complications, and blood transfusion. Model performance was evaluated using the Brier scores as calibration measures, and area under the ROC curve (AUC) and F1 scores as discrimination measures. Results GBM-based predictive models were observed to have better calibration and discrimination than the other models; thus, indicating comparatively better overall performance. The Brier scores for GBM models predicting the outcomes under investigation ranged from 0.09–0.14, AUCs ranged from 79–87%, and F1-scores ranged from 41–73%. Variable importance analysis for GBM models revealed that admission month, patient location, and patient’s income level were significant predictors for all the outcomes. Additionally, any post-surgical complications and blood transfusions were significantly predicted by deficiency anemias, and discharge disposition by length of stay and age groups. Notably, any post-surgical complications were also significantly predicted by the patient undergoing blood transfusion. Conclusions The predictive abilities of the ML models were successfully demonstrated using data from the National Inpatient Sample (NIS), indicating a wide range of clinical applications for obtaining accurate prognoses of complications following orthopedic surgical procedures." @default.
- W4221038421 created "2022-04-03" @default.
- W4221038421 creator A5024414972 @default.
- W4221038421 creator A5045341706 @default.
- W4221038421 creator A5053826788 @default.
- W4221038421 creator A5066528762 @default.
- W4221038421 creator A5071557124 @default.
- W4221038421 creator A5077596057 @default.
- W4221038421 date "2022-03-22" @default.
- W4221038421 modified "2023-09-26" @default.
- W4221038421 title "Utilization of machine learning methods for predicting surgical outcomes after total knee arthroplasty" @default.
- W4221038421 cites W1971654961 @default.
- W4221038421 cites W1975330545 @default.
- W4221038421 cites W1986641583 @default.
- W4221038421 cites W1988685801 @default.
- W4221038421 cites W2020471456 @default.
- W4221038421 cites W2039326399 @default.
- W4221038421 cites W2053009084 @default.
- W4221038421 cites W2067834942 @default.
- W4221038421 cites W2084825101 @default.
- W4221038421 cites W2118502261 @default.
- W4221038421 cites W2127550885 @default.
- W4221038421 cites W2134017881 @default.
- W4221038421 cites W2157542847 @default.
- W4221038421 cites W2157825442 @default.
- W4221038421 cites W2161933108 @default.
- W4221038421 cites W2162118661 @default.
- W4221038421 cites W2611485240 @default.
- W4221038421 cites W2622442827 @default.
- W4221038421 cites W2745182418 @default.
- W4221038421 cites W2762658547 @default.
- W4221038421 cites W3107981314 @default.
- W4221038421 cites W3109682927 @default.
- W4221038421 doi "https://doi.org/10.1371/journal.pone.0263897" @default.
- W4221038421 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35316270" @default.
- W4221038421 hasPublicationYear "2022" @default.
- W4221038421 type Work @default.
- W4221038421 citedByCount "4" @default.
- W4221038421 countsByYear W42210384212023 @default.
- W4221038421 crossrefType "journal-article" @default.
- W4221038421 hasAuthorship W4221038421A5024414972 @default.
- W4221038421 hasAuthorship W4221038421A5045341706 @default.
- W4221038421 hasAuthorship W4221038421A5053826788 @default.
- W4221038421 hasAuthorship W4221038421A5066528762 @default.
- W4221038421 hasAuthorship W4221038421A5071557124 @default.
- W4221038421 hasAuthorship W4221038421A5077596057 @default.
- W4221038421 hasBestOaLocation W42210384211 @default.
- W4221038421 hasConcept C118552586 @default.
- W4221038421 hasConcept C119857082 @default.
- W4221038421 hasConcept C126322002 @default.
- W4221038421 hasConcept C141071460 @default.
- W4221038421 hasConcept C151956035 @default.
- W4221038421 hasConcept C1862650 @default.
- W4221038421 hasConcept C194828623 @default.
- W4221038421 hasConcept C27415008 @default.
- W4221038421 hasConcept C2778336525 @default.
- W4221038421 hasConcept C35405484 @default.
- W4221038421 hasConcept C41008148 @default.
- W4221038421 hasConcept C45804977 @default.
- W4221038421 hasConcept C68312169 @default.
- W4221038421 hasConcept C71924100 @default.
- W4221038421 hasConceptScore W4221038421C118552586 @default.
- W4221038421 hasConceptScore W4221038421C119857082 @default.
- W4221038421 hasConceptScore W4221038421C126322002 @default.
- W4221038421 hasConceptScore W4221038421C141071460 @default.
- W4221038421 hasConceptScore W4221038421C151956035 @default.
- W4221038421 hasConceptScore W4221038421C1862650 @default.
- W4221038421 hasConceptScore W4221038421C194828623 @default.
- W4221038421 hasConceptScore W4221038421C27415008 @default.
- W4221038421 hasConceptScore W4221038421C2778336525 @default.
- W4221038421 hasConceptScore W4221038421C35405484 @default.
- W4221038421 hasConceptScore W4221038421C41008148 @default.
- W4221038421 hasConceptScore W4221038421C45804977 @default.
- W4221038421 hasConceptScore W4221038421C68312169 @default.
- W4221038421 hasConceptScore W4221038421C71924100 @default.
- W4221038421 hasFunder F4320333343 @default.
- W4221038421 hasIssue "3" @default.
- W4221038421 hasLocation W42210384211 @default.
- W4221038421 hasLocation W42210384212 @default.
- W4221038421 hasLocation W42210384213 @default.
- W4221038421 hasLocation W42210384214 @default.
- W4221038421 hasOpenAccess W4221038421 @default.
- W4221038421 hasPrimaryLocation W42210384211 @default.
- W4221038421 hasRelatedWork W2047967234 @default.
- W4221038421 hasRelatedWork W214433981 @default.
- W4221038421 hasRelatedWork W2292953679 @default.
- W4221038421 hasRelatedWork W2439875401 @default.
- W4221038421 hasRelatedWork W3167485325 @default.
- W4221038421 hasRelatedWork W3205747317 @default.
- W4221038421 hasRelatedWork W4288067793 @default.
- W4221038421 hasRelatedWork W4315927649 @default.
- W4221038421 hasRelatedWork W4380423212 @default.
- W4221038421 hasRelatedWork W4385616384 @default.
- W4221038421 hasVolume "17" @default.
- W4221038421 isParatext "false" @default.
- W4221038421 isRetracted "false" @default.
- W4221038421 workType "article" @default.