Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221042765> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4221042765 abstract "The cone-beam CT (CBCT) imaging systems that based on flat panel detectors have been widely implemented in image-guided intervention and radiation therapy applications. However, the imaging performance of CBCT is strongly limited. One of such limitations is the lack of quantitative imaging capability, which is important for material recognition, image contrast enhancement, and dose reduction. Over the past decade, dual-energy computed tomography (DECT) has become a promising imaging technique in generating quantitative material information, whereas, multiple (>2) basis images with high quality and accuracy are hard to be obtained from the conventional DECT image reconstruction algorithms. In this work, an innovative deep learning technique is presented to realize three materials decomposition from the dual-energy CBCT scans. In this strategy, a dedicated end-to-end convolutional neural network (CNN) is developed. It accepts the low and high energy CBCT projections, and automatically outputs three different basis image volumes (water basis, iodine basis, CaCl<sub>2</sub> basis) with high accuracy. Training data was synthesized numerically from the photos downloaded from ImageNet. Dual-energy projections of the Iodine/CaCl2 phantom with ground truth were acquired from our in-house benchtop CBCT system to validate the proposed method. Results demonstrate that this novel network is able to generate three different material bases with high accuracy (decomposition errors less than 5%). In conclusion, the proposed CNN based multi-material (≥ 3) decomposition approach shows promising benefits in high quality dual-energy CBCT imaging applications." @default.
- W4221042765 created "2022-04-03" @default.
- W4221042765 creator A5040099999 @default.
- W4221042765 creator A5042576006 @default.
- W4221042765 creator A5075789206 @default.
- W4221042765 creator A5090510008 @default.
- W4221042765 date "2022-04-04" @default.
- W4221042765 modified "2023-09-28" @default.
- W4221042765 title "Quantitative dual-energy CBCT imaging with deep triple-material decomposition" @default.
- W4221042765 cites W2072021306 @default.
- W4221042765 cites W2084789529 @default.
- W4221042765 cites W2108598243 @default.
- W4221042765 cites W2469072646 @default.
- W4221042765 cites W2800609902 @default.
- W4221042765 cites W4213315373 @default.
- W4221042765 doi "https://doi.org/10.1117/12.2611698" @default.
- W4221042765 hasPublicationYear "2022" @default.
- W4221042765 type Work @default.
- W4221042765 citedByCount "1" @default.
- W4221042765 countsByYear W42210427652023 @default.
- W4221042765 crossrefType "proceedings-article" @default.
- W4221042765 hasAuthorship W4221042765A5040099999 @default.
- W4221042765 hasAuthorship W4221042765A5042576006 @default.
- W4221042765 hasAuthorship W4221042765A5075789206 @default.
- W4221042765 hasAuthorship W4221042765A5090510008 @default.
- W4221042765 hasConcept C104293457 @default.
- W4221042765 hasConcept C108583219 @default.
- W4221042765 hasConcept C115961682 @default.
- W4221042765 hasConcept C121332964 @default.
- W4221042765 hasConcept C124681953 @default.
- W4221042765 hasConcept C141379421 @default.
- W4221042765 hasConcept C146849305 @default.
- W4221042765 hasConcept C154945302 @default.
- W4221042765 hasConcept C186370098 @default.
- W4221042765 hasConcept C18903297 @default.
- W4221042765 hasConcept C2989005 @default.
- W4221042765 hasConcept C31972630 @default.
- W4221042765 hasConcept C41008148 @default.
- W4221042765 hasConcept C55020928 @default.
- W4221042765 hasConcept C62520636 @default.
- W4221042765 hasConcept C71924100 @default.
- W4221042765 hasConcept C81363708 @default.
- W4221042765 hasConcept C86803240 @default.
- W4221042765 hasConceptScore W4221042765C104293457 @default.
- W4221042765 hasConceptScore W4221042765C108583219 @default.
- W4221042765 hasConceptScore W4221042765C115961682 @default.
- W4221042765 hasConceptScore W4221042765C121332964 @default.
- W4221042765 hasConceptScore W4221042765C124681953 @default.
- W4221042765 hasConceptScore W4221042765C141379421 @default.
- W4221042765 hasConceptScore W4221042765C146849305 @default.
- W4221042765 hasConceptScore W4221042765C154945302 @default.
- W4221042765 hasConceptScore W4221042765C186370098 @default.
- W4221042765 hasConceptScore W4221042765C18903297 @default.
- W4221042765 hasConceptScore W4221042765C2989005 @default.
- W4221042765 hasConceptScore W4221042765C31972630 @default.
- W4221042765 hasConceptScore W4221042765C41008148 @default.
- W4221042765 hasConceptScore W4221042765C55020928 @default.
- W4221042765 hasConceptScore W4221042765C62520636 @default.
- W4221042765 hasConceptScore W4221042765C71924100 @default.
- W4221042765 hasConceptScore W4221042765C81363708 @default.
- W4221042765 hasConceptScore W4221042765C86803240 @default.
- W4221042765 hasLocation W42210427651 @default.
- W4221042765 hasOpenAccess W4221042765 @default.
- W4221042765 hasPrimaryLocation W42210427651 @default.
- W4221042765 hasRelatedWork W2731899572 @default.
- W4221042765 hasRelatedWork W2999805992 @default.
- W4221042765 hasRelatedWork W3011074480 @default.
- W4221042765 hasRelatedWork W3116150086 @default.
- W4221042765 hasRelatedWork W3133861977 @default.
- W4221042765 hasRelatedWork W3192840557 @default.
- W4221042765 hasRelatedWork W4200173597 @default.
- W4221042765 hasRelatedWork W4291897433 @default.
- W4221042765 hasRelatedWork W4312417841 @default.
- W4221042765 hasRelatedWork W4321369474 @default.
- W4221042765 isParatext "false" @default.
- W4221042765 isRetracted "false" @default.
- W4221042765 workType "article" @default.