Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221054652> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4221054652 endingPage "290" @default.
- W4221054652 startingPage "283" @default.
- W4221054652 abstract "The decision to continue or discontinue antiepileptic drug (AED) treatment in patients who are seizure free for a prolonged time is critical. Studies have used certain risk factors or electroencephalogram (EEG) findings to predict seizure recurrence after the withdrawal of AEDs. However, applicable biomarkers to guide the withdrawal of AEDs are lacking.In this study, we used EEG analysis based on multiscale deep neural networks (MSDNN) to establish a method for predicting seizure recurrence after the withdrawal of AEDs. A total of 60 patients with epilepsy were divided into two groups (30 in the recurrence group and 30 in the non-recurrence group). All patients were seizure free for at least 2 years. Before AED withdrawal, an EEG was performed for each patient, which showed no epileptiform discharges. These EEG recordings were classified using MSDNN.We found that the performance indices of classification between recurrence and non-recurrence groups had a mean sensitivity, mean specificity, mean accuracy, and mean area under the receiver operating characteristic curve of 74.23%, 75.83%, 74.66%, and 82.66%, respectively.Our proposed method is a promising tool to help physicians to predict seizure recurrence after AED withdrawal among seizure-free patients." @default.
- W4221054652 created "2022-04-03" @default.
- W4221054652 creator A5013498390 @default.
- W4221054652 creator A5027956339 @default.
- W4221054652 creator A5028211956 @default.
- W4221054652 creator A5028604381 @default.
- W4221054652 creator A5051195604 @default.
- W4221054652 creator A5061758333 @default.
- W4221054652 creator A5086635268 @default.
- W4221054652 date "2022-05-01" @default.
- W4221054652 modified "2023-10-17" @default.
- W4221054652 title "Prediction of seizure recurrence using electroencephalogram analysis with multiscale deep neural networks before withdrawal of antiepileptic drugs" @default.
- W4221054652 cites W1964625629 @default.
- W4221054652 cites W1974809694 @default.
- W4221054652 cites W1997540571 @default.
- W4221054652 cites W2023925001 @default.
- W4221054652 cites W2053720649 @default.
- W4221054652 cites W2064675550 @default.
- W4221054652 cites W2068125669 @default.
- W4221054652 cites W2073393322 @default.
- W4221054652 cites W2091283327 @default.
- W4221054652 cites W2095105882 @default.
- W4221054652 cites W2114427007 @default.
- W4221054652 cites W2128495200 @default.
- W4221054652 cites W2170609488 @default.
- W4221054652 cites W2507937192 @default.
- W4221054652 cites W2560661076 @default.
- W4221054652 cites W2592509339 @default.
- W4221054652 cites W2610533508 @default.
- W4221054652 cites W2741907166 @default.
- W4221054652 cites W2759483166 @default.
- W4221054652 cites W2968685384 @default.
- W4221054652 cites W3099085560 @default.
- W4221054652 cites W3100777112 @default.
- W4221054652 cites W3102455230 @default.
- W4221054652 cites W3119307757 @default.
- W4221054652 cites W3140587407 @default.
- W4221054652 cites W3153903265 @default.
- W4221054652 cites W3163437202 @default.
- W4221054652 cites W3165430704 @default.
- W4221054652 cites W4211013529 @default.
- W4221054652 doi "https://doi.org/10.1016/j.pedneo.2021.12.011" @default.
- W4221054652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35367151" @default.
- W4221054652 hasPublicationYear "2022" @default.
- W4221054652 type Work @default.
- W4221054652 citedByCount "2" @default.
- W4221054652 countsByYear W42210546522023 @default.
- W4221054652 crossrefType "journal-article" @default.
- W4221054652 hasAuthorship W4221054652A5013498390 @default.
- W4221054652 hasAuthorship W4221054652A5027956339 @default.
- W4221054652 hasAuthorship W4221054652A5028211956 @default.
- W4221054652 hasAuthorship W4221054652A5028604381 @default.
- W4221054652 hasAuthorship W4221054652A5051195604 @default.
- W4221054652 hasAuthorship W4221054652A5061758333 @default.
- W4221054652 hasAuthorship W4221054652A5086635268 @default.
- W4221054652 hasBestOaLocation W42210546521 @default.
- W4221054652 hasConcept C118552586 @default.
- W4221054652 hasConcept C126322002 @default.
- W4221054652 hasConcept C2778062832 @default.
- W4221054652 hasConcept C2778186239 @default.
- W4221054652 hasConcept C2780035454 @default.
- W4221054652 hasConcept C2994127763 @default.
- W4221054652 hasConcept C42219234 @default.
- W4221054652 hasConcept C522805319 @default.
- W4221054652 hasConcept C58471807 @default.
- W4221054652 hasConcept C71924100 @default.
- W4221054652 hasConceptScore W4221054652C118552586 @default.
- W4221054652 hasConceptScore W4221054652C126322002 @default.
- W4221054652 hasConceptScore W4221054652C2778062832 @default.
- W4221054652 hasConceptScore W4221054652C2778186239 @default.
- W4221054652 hasConceptScore W4221054652C2780035454 @default.
- W4221054652 hasConceptScore W4221054652C2994127763 @default.
- W4221054652 hasConceptScore W4221054652C42219234 @default.
- W4221054652 hasConceptScore W4221054652C522805319 @default.
- W4221054652 hasConceptScore W4221054652C58471807 @default.
- W4221054652 hasConceptScore W4221054652C71924100 @default.
- W4221054652 hasFunder F4320322795 @default.
- W4221054652 hasFunder F4320327176 @default.
- W4221054652 hasIssue "3" @default.
- W4221054652 hasLocation W42210546521 @default.
- W4221054652 hasLocation W42210546522 @default.
- W4221054652 hasOpenAccess W4221054652 @default.
- W4221054652 hasPrimaryLocation W42210546521 @default.
- W4221054652 hasRelatedWork W1572886271 @default.
- W4221054652 hasRelatedWork W2066661146 @default.
- W4221054652 hasRelatedWork W2132946744 @default.
- W4221054652 hasRelatedWork W2534265115 @default.
- W4221054652 hasRelatedWork W2912153408 @default.
- W4221054652 hasRelatedWork W3017199236 @default.
- W4221054652 hasRelatedWork W3029576642 @default.
- W4221054652 hasRelatedWork W3032822031 @default.
- W4221054652 hasRelatedWork W3078711533 @default.
- W4221054652 hasRelatedWork W3136068143 @default.
- W4221054652 hasVolume "63" @default.
- W4221054652 isParatext "false" @default.
- W4221054652 isRetracted "false" @default.
- W4221054652 workType "article" @default.