Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221054786> ?p ?o ?g. }
- W4221054786 endingPage "123676" @default.
- W4221054786 startingPage "123676" @default.
- W4221054786 abstract "Torrefaction is a treatment process for converting biomass to high-quality solid fuels. The investigation and interpretation of this process on highly dimensional, non-linear relationships as large datasets are limited. In this work, machine learning (ML) in combination with collaborative game theory (Shapley additive explanation, SHAP) was applied to develop an interpretable model in predicting solid yields (SY) and higher heating values (HHV) of solid products from biomass torrefaction using 18 independent input features from operating conditions, feedstock characteristics and torrefaction reactor properties. Three novel ML algorithms were evaluated, based on 10-fold cross-validation, with 5 different sets of input features. A gradient tree boosting (GTB) model was found to have the highest prediction accuracy R2 of 0.93 with root mean square error (RMSE) of 0.06 for SY while about 0.91 R2 with 0.79 RMSE for HHV. With the powerful SHAP algorithm, a new framework was proposed to interpret/explain the GTB model performance and highlight the highly influential features for the system of biomass torrefaction in both local and global points of view. Interactions for any pair of the features on the GTB model can be achieved. This application of ML with SHAP is a useful tool for researchers on biomass conversion." @default.
- W4221054786 created "2022-04-03" @default.
- W4221054786 creator A5014802853 @default.
- W4221054786 creator A5022057786 @default.
- W4221054786 creator A5039379015 @default.
- W4221054786 creator A5076119263 @default.
- W4221054786 date "2022-06-01" @default.
- W4221054786 modified "2023-10-12" @default.
- W4221054786 title "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass" @default.
- W4221054786 cites W1154342805 @default.
- W4221054786 cites W1965721511 @default.
- W4221054786 cites W2008085407 @default.
- W4221054786 cites W2022731943 @default.
- W4221054786 cites W2033275656 @default.
- W4221054786 cites W2038757940 @default.
- W4221054786 cites W2059958079 @default.
- W4221054786 cites W2060777509 @default.
- W4221054786 cites W2067196885 @default.
- W4221054786 cites W2082137964 @default.
- W4221054786 cites W2089374199 @default.
- W4221054786 cites W2347015013 @default.
- W4221054786 cites W2496010748 @default.
- W4221054786 cites W2508558813 @default.
- W4221054786 cites W2511390396 @default.
- W4221054786 cites W2565726175 @default.
- W4221054786 cites W2605464781 @default.
- W4221054786 cites W2735706274 @default.
- W4221054786 cites W2766653168 @default.
- W4221054786 cites W2770228979 @default.
- W4221054786 cites W2782076459 @default.
- W4221054786 cites W2792136446 @default.
- W4221054786 cites W2805727081 @default.
- W4221054786 cites W2884722867 @default.
- W4221054786 cites W2888082257 @default.
- W4221054786 cites W2890603760 @default.
- W4221054786 cites W2892741787 @default.
- W4221054786 cites W2893987412 @default.
- W4221054786 cites W2899934575 @default.
- W4221054786 cites W2901144023 @default.
- W4221054786 cites W2901460839 @default.
- W4221054786 cites W2921084929 @default.
- W4221054786 cites W2936512656 @default.
- W4221054786 cites W2938679167 @default.
- W4221054786 cites W2940415482 @default.
- W4221054786 cites W2946512733 @default.
- W4221054786 cites W2972443703 @default.
- W4221054786 cites W2981368760 @default.
- W4221054786 cites W2991351573 @default.
- W4221054786 cites W2991816849 @default.
- W4221054786 cites W2995528380 @default.
- W4221054786 cites W2996534145 @default.
- W4221054786 cites W2996705655 @default.
- W4221054786 cites W2999615587 @default.
- W4221054786 cites W3000007148 @default.
- W4221054786 cites W3005562583 @default.
- W4221054786 cites W3014451974 @default.
- W4221054786 cites W3022628809 @default.
- W4221054786 cites W3024525656 @default.
- W4221054786 cites W3035353528 @default.
- W4221054786 cites W3040361735 @default.
- W4221054786 cites W3043435488 @default.
- W4221054786 cites W3088092331 @default.
- W4221054786 cites W3106658751 @default.
- W4221054786 cites W3111505194 @default.
- W4221054786 cites W3114994086 @default.
- W4221054786 cites W3119663001 @default.
- W4221054786 cites W3148014619 @default.
- W4221054786 cites W3158849484 @default.
- W4221054786 cites W3160203551 @default.
- W4221054786 cites W3161183485 @default.
- W4221054786 cites W3168205381 @default.
- W4221054786 cites W3172769114 @default.
- W4221054786 cites W3191420729 @default.
- W4221054786 cites W823442034 @default.
- W4221054786 doi "https://doi.org/10.1016/j.energy.2022.123676" @default.
- W4221054786 hasPublicationYear "2022" @default.
- W4221054786 type Work @default.
- W4221054786 citedByCount "24" @default.
- W4221054786 countsByYear W42210547862022 @default.
- W4221054786 countsByYear W42210547862023 @default.
- W4221054786 crossrefType "journal-article" @default.
- W4221054786 hasAuthorship W4221054786A5014802853 @default.
- W4221054786 hasAuthorship W4221054786A5022057786 @default.
- W4221054786 hasAuthorship W4221054786A5039379015 @default.
- W4221054786 hasAuthorship W4221054786A5076119263 @default.
- W4221054786 hasConcept C105795698 @default.
- W4221054786 hasConcept C105923489 @default.
- W4221054786 hasConcept C111368507 @default.
- W4221054786 hasConcept C111919701 @default.
- W4221054786 hasConcept C11413529 @default.
- W4221054786 hasConcept C115540264 @default.
- W4221054786 hasConcept C119857082 @default.
- W4221054786 hasConcept C127313418 @default.
- W4221054786 hasConcept C127413603 @default.
- W4221054786 hasConcept C139945424 @default.
- W4221054786 hasConcept C144237770 @default.
- W4221054786 hasConcept C154945302 @default.
- W4221054786 hasConcept C156383657 @default.