Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221060331> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4221060331 endingPage "1875" @default.
- W4221060331 startingPage "1861" @default.
- W4221060331 abstract "Video anomaly detection is essential to distinguish abnormal events in large volumes of surveillance video and can benefit many fields such as traffic management, public security and failure detection. However, traditional video anomaly detection methods are unable to accurately detect and locate abnormal events in real scenarios, while existing deep learning methods are likely to omit important information when extracting features. In order to avoid omitting important features and improve the accuracy of abnormal event detection and localization, this paper proposes a novel method called Multi Chunk Learning based Skip Connected Convolutional Auto Encoder (MCSCAE). The proposed method improves the accuracy of video anomaly detection by obtaining more vital information. In the data sorting phase, non-uniform chunking is proposed to divide the video frame into several chunks of different sizes to avoid obtaining unnecessary information and omitting crucial information. In order to well reflect the abnormal motion of objects in the video, a new feature, the inter frame flow feature, which is obtained by merging inter frame difference and optical flow features, is proposed to extract motion feature. Moreover, in this paper, skip connection in the auto encoder is utilized during the training phase to reduce the reconstruction error between the original frames and the reconstruction frames, so that the reconstruction error can be used to detect abnormal events during testing. Experience on three public datasets verifies the effectiveness and accuracy of our proposed method. Experimental results show that the proposed method can detect and locate abnormal events outperforms other recent methods significantly." @default.
- W4221060331 created "2022-04-03" @default.
- W4221060331 creator A5028324265 @default.
- W4221060331 creator A5053605130 @default.
- W4221060331 creator A5073501391 @default.
- W4221060331 creator A5085214289 @default.
- W4221060331 date "2022-01-01" @default.
- W4221060331 modified "2023-10-14" @default.
- W4221060331 title "Multi Chunk Learning Based Auto Encoder for Video Anomaly Detection" @default.
- W4221060331 cites W2079023123 @default.
- W4221060331 cites W2606538621 @default.
- W4221060331 cites W2732331263 @default.
- W4221060331 cites W2748846029 @default.
- W4221060331 cites W2964269821 @default.
- W4221060331 cites W2970645682 @default.
- W4221060331 cites W2970724283 @default.
- W4221060331 cites W2976482555 @default.
- W4221060331 cites W2982708882 @default.
- W4221060331 cites W3021319375 @default.
- W4221060331 cites W3081114748 @default.
- W4221060331 cites W3098741497 @default.
- W4221060331 cites W3109723795 @default.
- W4221060331 cites W3132998919 @default.
- W4221060331 cites W3163504024 @default.
- W4221060331 cites W3171328460 @default.
- W4221060331 cites W3204783729 @default.
- W4221060331 cites W3205597845 @default.
- W4221060331 cites W3206221682 @default.
- W4221060331 cites W3213684602 @default.
- W4221060331 cites W3216596187 @default.
- W4221060331 cites W4211167214 @default.
- W4221060331 cites W4237006461 @default.
- W4221060331 cites W4206073726 @default.
- W4221060331 doi "https://doi.org/10.32604/iasc.2022.027182" @default.
- W4221060331 hasPublicationYear "2022" @default.
- W4221060331 type Work @default.
- W4221060331 citedByCount "0" @default.
- W4221060331 crossrefType "journal-article" @default.
- W4221060331 hasAuthorship W4221060331A5028324265 @default.
- W4221060331 hasAuthorship W4221060331A5053605130 @default.
- W4221060331 hasAuthorship W4221060331A5073501391 @default.
- W4221060331 hasAuthorship W4221060331A5085214289 @default.
- W4221060331 hasBestOaLocation W42210603311 @default.
- W4221060331 hasConcept C101738243 @default.
- W4221060331 hasConcept C108583219 @default.
- W4221060331 hasConcept C111919701 @default.
- W4221060331 hasConcept C115961682 @default.
- W4221060331 hasConcept C118505674 @default.
- W4221060331 hasConcept C126042441 @default.
- W4221060331 hasConcept C138885662 @default.
- W4221060331 hasConcept C153180895 @default.
- W4221060331 hasConcept C154945302 @default.
- W4221060331 hasConcept C155542232 @default.
- W4221060331 hasConcept C2776401178 @default.
- W4221060331 hasConcept C31972630 @default.
- W4221060331 hasConcept C41008148 @default.
- W4221060331 hasConcept C41895202 @default.
- W4221060331 hasConcept C739882 @default.
- W4221060331 hasConcept C76155785 @default.
- W4221060331 hasConceptScore W4221060331C101738243 @default.
- W4221060331 hasConceptScore W4221060331C108583219 @default.
- W4221060331 hasConceptScore W4221060331C111919701 @default.
- W4221060331 hasConceptScore W4221060331C115961682 @default.
- W4221060331 hasConceptScore W4221060331C118505674 @default.
- W4221060331 hasConceptScore W4221060331C126042441 @default.
- W4221060331 hasConceptScore W4221060331C138885662 @default.
- W4221060331 hasConceptScore W4221060331C153180895 @default.
- W4221060331 hasConceptScore W4221060331C154945302 @default.
- W4221060331 hasConceptScore W4221060331C155542232 @default.
- W4221060331 hasConceptScore W4221060331C2776401178 @default.
- W4221060331 hasConceptScore W4221060331C31972630 @default.
- W4221060331 hasConceptScore W4221060331C41008148 @default.
- W4221060331 hasConceptScore W4221060331C41895202 @default.
- W4221060331 hasConceptScore W4221060331C739882 @default.
- W4221060331 hasConceptScore W4221060331C76155785 @default.
- W4221060331 hasIssue "3" @default.
- W4221060331 hasLocation W42210603311 @default.
- W4221060331 hasOpenAccess W4221060331 @default.
- W4221060331 hasPrimaryLocation W42210603311 @default.
- W4221060331 hasRelatedWork W2171116555 @default.
- W4221060331 hasRelatedWork W2292254049 @default.
- W4221060331 hasRelatedWork W2669956259 @default.
- W4221060331 hasRelatedWork W2897995864 @default.
- W4221060331 hasRelatedWork W2939353110 @default.
- W4221060331 hasRelatedWork W2998168123 @default.
- W4221060331 hasRelatedWork W4281553171 @default.
- W4221060331 hasRelatedWork W4287178339 @default.
- W4221060331 hasRelatedWork W4287995534 @default.
- W4221060331 hasRelatedWork W4327774331 @default.
- W4221060331 hasVolume "33" @default.
- W4221060331 isParatext "false" @default.
- W4221060331 isRetracted "false" @default.
- W4221060331 workType "article" @default.