Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221063397> ?p ?o ?g. }
- W4221063397 endingPage "100709" @default.
- W4221063397 startingPage "100709" @default.
- W4221063397 abstract "In this paper, we present a new intelligent system based on multi-agent system for energy management in micro-grid with grid-connected mode and mainly based on wind energy. The main contribution of this work is to present a model for wind power prediction for the next hour using the wind speed values of previous hours. It is a model based on a deep recurrent neural network with Long Short Term Memory which takes as input a number of previous values of the wind speed and as output the wind power produced for the next hour. The proposed model is compared to a Multi-Layer Perceptron with the same inputs and output. Both models aim to find a hidden correlation between historical weather data (previous wind speeds) and the next wind power produced. Using as a case study the dataset from a real site located in Tetouan city in Morocco, experimental results show that Long Short Term Memory based prediction model yields good results and successfully achieve high accuracy compared to Multi-Layer Perceptron based model. To establish a robust energy management strategy, a fuzzy logic controller is used as decision-making tool to manage the different energy flows in the micro-grid and to control the amount of electricity delivered or taken from the distribution network in order to reduce the costs and maximize the profits." @default.
- W4221063397 created "2022-04-03" @default.
- W4221063397 creator A5063767897 @default.
- W4221063397 creator A5078495751 @default.
- W4221063397 creator A5082509832 @default.
- W4221063397 date "2022-09-01" @default.
- W4221063397 modified "2023-09-25" @default.
- W4221063397 title "Intelligent energy management for micro-grid based on deep learning LSTM prediction model and fuzzy decision-making" @default.
- W4221063397 cites W1634828275 @default.
- W4221063397 cites W1705374184 @default.
- W4221063397 cites W1856113898 @default.
- W4221063397 cites W1921739 @default.
- W4221063397 cites W1973183176 @default.
- W4221063397 cites W1984478203 @default.
- W4221063397 cites W1989092102 @default.
- W4221063397 cites W1989678923 @default.
- W4221063397 cites W1994170512 @default.
- W4221063397 cites W1994747772 @default.
- W4221063397 cites W2022138116 @default.
- W4221063397 cites W2033247633 @default.
- W4221063397 cites W2034142432 @default.
- W4221063397 cites W2064675550 @default.
- W4221063397 cites W2073629562 @default.
- W4221063397 cites W2129270932 @default.
- W4221063397 cites W2144064425 @default.
- W4221063397 cites W2150838321 @default.
- W4221063397 cites W2153263933 @default.
- W4221063397 cites W2160141417 @default.
- W4221063397 cites W2162197136 @default.
- W4221063397 cites W2165799067 @default.
- W4221063397 cites W2273824400 @default.
- W4221063397 cites W2475218214 @default.
- W4221063397 cites W2511683089 @default.
- W4221063397 cites W2522334782 @default.
- W4221063397 cites W2560370080 @default.
- W4221063397 cites W2560599441 @default.
- W4221063397 cites W2584850762 @default.
- W4221063397 cites W2691864041 @default.
- W4221063397 cites W2749526959 @default.
- W4221063397 cites W2791649304 @default.
- W4221063397 cites W2801716390 @default.
- W4221063397 cites W2890477073 @default.
- W4221063397 cites W2894821558 @default.
- W4221063397 cites W2897625161 @default.
- W4221063397 cites W2910279921 @default.
- W4221063397 cites W2915610351 @default.
- W4221063397 cites W2919115771 @default.
- W4221063397 cites W2944920662 @default.
- W4221063397 cites W2960560113 @default.
- W4221063397 cites W2962692515 @default.
- W4221063397 cites W2966305977 @default.
- W4221063397 cites W2968862935 @default.
- W4221063397 cites W2995177806 @default.
- W4221063397 cites W3005953998 @default.
- W4221063397 doi "https://doi.org/10.1016/j.suscom.2022.100709" @default.
- W4221063397 hasPublicationYear "2022" @default.
- W4221063397 type Work @default.
- W4221063397 citedByCount "4" @default.
- W4221063397 countsByYear W42210633972022 @default.
- W4221063397 countsByYear W42210633972023 @default.
- W4221063397 crossrefType "journal-article" @default.
- W4221063397 hasAuthorship W4221063397A5063767897 @default.
- W4221063397 hasAuthorship W4221063397A5078495751 @default.
- W4221063397 hasAuthorship W4221063397A5082509832 @default.
- W4221063397 hasConcept C105795698 @default.
- W4221063397 hasConcept C119599485 @default.
- W4221063397 hasConcept C121332964 @default.
- W4221063397 hasConcept C124101348 @default.
- W4221063397 hasConcept C127413603 @default.
- W4221063397 hasConcept C153294291 @default.
- W4221063397 hasConcept C154945302 @default.
- W4221063397 hasConcept C161067210 @default.
- W4221063397 hasConcept C179717631 @default.
- W4221063397 hasConcept C186370098 @default.
- W4221063397 hasConcept C187691185 @default.
- W4221063397 hasConcept C203479927 @default.
- W4221063397 hasConcept C2524010 @default.
- W4221063397 hasConcept C2781260460 @default.
- W4221063397 hasConcept C33923547 @default.
- W4221063397 hasConcept C41008148 @default.
- W4221063397 hasConcept C50644808 @default.
- W4221063397 hasConcept C58166 @default.
- W4221063397 hasConcept C60908668 @default.
- W4221063397 hasConcept C6557445 @default.
- W4221063397 hasConcept C7817414 @default.
- W4221063397 hasConcept C78600449 @default.
- W4221063397 hasConcept C79403827 @default.
- W4221063397 hasConcept C86803240 @default.
- W4221063397 hasConceptScore W4221063397C105795698 @default.
- W4221063397 hasConceptScore W4221063397C119599485 @default.
- W4221063397 hasConceptScore W4221063397C121332964 @default.
- W4221063397 hasConceptScore W4221063397C124101348 @default.
- W4221063397 hasConceptScore W4221063397C127413603 @default.
- W4221063397 hasConceptScore W4221063397C153294291 @default.
- W4221063397 hasConceptScore W4221063397C154945302 @default.
- W4221063397 hasConceptScore W4221063397C161067210 @default.
- W4221063397 hasConceptScore W4221063397C179717631 @default.
- W4221063397 hasConceptScore W4221063397C186370098 @default.