Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221065240> ?p ?o ?g. }
- W4221065240 abstract "Abstract In this work, we explore data‐driven techniques for the fast and early diagnosis concerning the etiological origin of meningitis, more specifically with regard to differentiating between viral and bacterial meningitis. We study how machine learning can be used to predict meningitis aetiology once a patient has been diagnosed with this disease. We have a dataset of 26,228 patients described by 19 attributes, mainly about the patient's observable symptoms and the early results of the cerebrospinal fluid analysis. Using this dataset, we have explored several techniques of dataset sampling, feature selection and classification models based both on ensemble methods and on simple techniques (mainly, decision trees). Experiments with 27 classification models (19 of them involving ensemble methods) have been conducted for this paper. Our main finding is that the combination of ensemble methods with decision trees leads to the best meningitis aetiology classifiers. The best performance indicator values (precision, recall and f ‐measure of 89% and an AUC value of 95%) have been achieved by the synergy between bagging and NBTrees. Nonetheless, our results also suggest that the combination of ensemble methods with certain decision tree clearly improves the performance of diagnosis in comparison with those obtained with only the corresponding decision tree." @default.
- W4221065240 created "2022-04-03" @default.
- W4221065240 creator A5002080662 @default.
- W4221065240 creator A5054297341 @default.
- W4221065240 creator A5062037046 @default.
- W4221065240 date "2022-03-18" @default.
- W4221065240 modified "2023-10-01" @default.
- W4221065240 title "Ensemble methods for meningitis aetiology diagnosis" @default.
- W4221065240 cites W1562055382 @default.
- W4221065240 cites W1576996201 @default.
- W4221065240 cites W1583700199 @default.
- W4221065240 cites W1965057901 @default.
- W4221065240 cites W1974079881 @default.
- W4221065240 cites W1976243885 @default.
- W4221065240 cites W1976526581 @default.
- W4221065240 cites W1980264541 @default.
- W4221065240 cites W1980952929 @default.
- W4221065240 cites W1981883771 @default.
- W4221065240 cites W1986202754 @default.
- W4221065240 cites W1988790447 @default.
- W4221065240 cites W1989507768 @default.
- W4221065240 cites W1989628460 @default.
- W4221065240 cites W1993220166 @default.
- W4221065240 cites W2005142741 @default.
- W4221065240 cites W2005341920 @default.
- W4221065240 cites W2021137987 @default.
- W4221065240 cites W2022752092 @default.
- W4221065240 cites W2025807838 @default.
- W4221065240 cites W2027783771 @default.
- W4221065240 cites W2043382905 @default.
- W4221065240 cites W2048403873 @default.
- W4221065240 cites W2049342041 @default.
- W4221065240 cites W2050341986 @default.
- W4221065240 cites W2053724458 @default.
- W4221065240 cites W2054144613 @default.
- W4221065240 cites W2061082730 @default.
- W4221065240 cites W2065813866 @default.
- W4221065240 cites W2081097995 @default.
- W4221065240 cites W2084341220 @default.
- W4221065240 cites W2100128988 @default.
- W4221065240 cites W2108949035 @default.
- W4221065240 cites W2113062252 @default.
- W4221065240 cites W2148143831 @default.
- W4221065240 cites W2150482086 @default.
- W4221065240 cites W2150757437 @default.
- W4221065240 cites W2157199697 @default.
- W4221065240 cites W2164777277 @default.
- W4221065240 cites W2167243426 @default.
- W4221065240 cites W2191006491 @default.
- W4221065240 cites W2213782059 @default.
- W4221065240 cites W2276849971 @default.
- W4221065240 cites W2317515691 @default.
- W4221065240 cites W2326122211 @default.
- W4221065240 cites W2331956941 @default.
- W4221065240 cites W2417999172 @default.
- W4221065240 cites W2515502085 @default.
- W4221065240 cites W2560070550 @default.
- W4221065240 cites W2586068811 @default.
- W4221065240 cites W2593914038 @default.
- W4221065240 cites W2613771876 @default.
- W4221065240 cites W2737005191 @default.
- W4221065240 cites W2743590231 @default.
- W4221065240 cites W2760508920 @default.
- W4221065240 cites W2765169965 @default.
- W4221065240 cites W2787894218 @default.
- W4221065240 cites W2891503716 @default.
- W4221065240 cites W2899297042 @default.
- W4221065240 cites W2908346916 @default.
- W4221065240 cites W2911964244 @default.
- W4221065240 cites W2945808156 @default.
- W4221065240 cites W2945819472 @default.
- W4221065240 cites W2981783341 @default.
- W4221065240 cites W2990991805 @default.
- W4221065240 cites W2999615587 @default.
- W4221065240 cites W2999801408 @default.
- W4221065240 cites W3022935508 @default.
- W4221065240 cites W3191664920 @default.
- W4221065240 cites W4212883601 @default.
- W4221065240 cites W4236137412 @default.
- W4221065240 cites W4244952642 @default.
- W4221065240 cites W4248018214 @default.
- W4221065240 cites W4302596785 @default.
- W4221065240 doi "https://doi.org/10.1111/exsy.12996" @default.
- W4221065240 hasPublicationYear "2022" @default.
- W4221065240 type Work @default.
- W4221065240 citedByCount "2" @default.
- W4221065240 countsByYear W42210652402023 @default.
- W4221065240 crossrefType "journal-article" @default.
- W4221065240 hasAuthorship W4221065240A5002080662 @default.
- W4221065240 hasAuthorship W4221065240A5054297341 @default.
- W4221065240 hasAuthorship W4221065240A5062037046 @default.
- W4221065240 hasBestOaLocation W42210652401 @default.
- W4221065240 hasConcept C10229987 @default.
- W4221065240 hasConcept C119857082 @default.
- W4221065240 hasConcept C119898033 @default.
- W4221065240 hasConcept C120136583 @default.
- W4221065240 hasConcept C124101348 @default.
- W4221065240 hasConcept C137627325 @default.
- W4221065240 hasConcept C142724271 @default.
- W4221065240 hasConcept C148483581 @default.