Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221076030> ?p ?o ?g. }
- W4221076030 endingPage "19" @default.
- W4221076030 startingPage "1" @default.
- W4221076030 abstract "The rapid development of telecommunication network has produced a large amount of spatial-temporal information of mobile phone users. GPS data are typically collected by smartphones apps, which are restricted to small samples of the population. Cellular signaling data (CSD) are usually collected by mobile network operators, which enables researchers to conduct travel behavior analysis of the entire population at a relatively low cost compared to GPS. However, extracting travel mode information from CSD is particularly challenging due to the noise data and low positioning accuracy. This paper proposes a travel mode identification framework based on CSD, which includes data cleansing and travel mode identification. In terms of data cleansing, oscillation sequence and drift data are mainly cleansed. For the oscillation sequence, this paper proposes a detection algorithm based on time window. For the drift data, this paper proposes a detection algorithm based on distance, velocity and frequency. In terms of travel mode identification, the task is divided into two dichotomous problems: motor and non-motor transport identification and public and private transport identification. Each dichotomous problem proposes an algorithm that does not rely on the ground truth dataset for model training. Finally, a ground truth dataset is constructed to verify all algorithms. The result shows that, in terms of data cleansing, the similarity between CSD after cleansing and the actual trajectory according to DTW improved by 101.13% on average. In terms of travel mode identification, the proposed method can achieve similar or even better accuracy than traditional supervised-learning algorithms (94% in motor and non-motor transport identification, 83.5% in public and private transport identification), which can be directly applied to large-scale population analysis scenarios." @default.
- W4221076030 created "2022-04-03" @default.
- W4221076030 creator A5028375271 @default.
- W4221076030 creator A5040402501 @default.
- W4221076030 creator A5064212351 @default.
- W4221076030 date "2022-04-01" @default.
- W4221076030 modified "2023-10-18" @default.
- W4221076030 title "A Travel Mode Identification Framework Based on Cellular Signaling Data" @default.
- W4221076030 cites W1436652029 @default.
- W4221076030 cites W1731839985 @default.
- W4221076030 cites W1911881499 @default.
- W4221076030 cites W1962460445 @default.
- W4221076030 cites W1972859236 @default.
- W4221076030 cites W1973795610 @default.
- W4221076030 cites W1982300822 @default.
- W4221076030 cites W1991024675 @default.
- W4221076030 cites W2013765678 @default.
- W4221076030 cites W2016351790 @default.
- W4221076030 cites W2056495296 @default.
- W4221076030 cites W2079672634 @default.
- W4221076030 cites W2133400794 @default.
- W4221076030 cites W2136163743 @default.
- W4221076030 cites W2145763954 @default.
- W4221076030 cites W2235226029 @default.
- W4221076030 cites W2317515691 @default.
- W4221076030 cites W2535078255 @default.
- W4221076030 cites W2552766880 @default.
- W4221076030 cites W2597533437 @default.
- W4221076030 cites W2776509196 @default.
- W4221076030 cites W2791255851 @default.
- W4221076030 cites W2916528253 @default.
- W4221076030 cites W2947428072 @default.
- W4221076030 cites W2998510732 @default.
- W4221076030 cites W3016310770 @default.
- W4221076030 cites W3138893155 @default.
- W4221076030 doi "https://doi.org/10.1155/2022/2113213" @default.
- W4221076030 hasPublicationYear "2022" @default.
- W4221076030 type Work @default.
- W4221076030 citedByCount "1" @default.
- W4221076030 countsByYear W42210760302022 @default.
- W4221076030 crossrefType "journal-article" @default.
- W4221076030 hasAuthorship W4221076030A5028375271 @default.
- W4221076030 hasAuthorship W4221076030A5040402501 @default.
- W4221076030 hasAuthorship W4221076030A5064212351 @default.
- W4221076030 hasBestOaLocation W42210760301 @default.
- W4221076030 hasConcept C111919701 @default.
- W4221076030 hasConcept C115961682 @default.
- W4221076030 hasConcept C116834253 @default.
- W4221076030 hasConcept C119857082 @default.
- W4221076030 hasConcept C124101348 @default.
- W4221076030 hasConcept C144024400 @default.
- W4221076030 hasConcept C146849305 @default.
- W4221076030 hasConcept C149923435 @default.
- W4221076030 hasConcept C154945302 @default.
- W4221076030 hasConcept C162324750 @default.
- W4221076030 hasConcept C176217482 @default.
- W4221076030 hasConcept C21547014 @default.
- W4221076030 hasConcept C24756922 @default.
- W4221076030 hasConcept C2908647359 @default.
- W4221076030 hasConcept C41008148 @default.
- W4221076030 hasConcept C42199009 @default.
- W4221076030 hasConcept C48677424 @default.
- W4221076030 hasConcept C59822182 @default.
- W4221076030 hasConcept C60229501 @default.
- W4221076030 hasConcept C76155785 @default.
- W4221076030 hasConcept C79403827 @default.
- W4221076030 hasConcept C86803240 @default.
- W4221076030 hasConcept C99498987 @default.
- W4221076030 hasConceptScore W4221076030C111919701 @default.
- W4221076030 hasConceptScore W4221076030C115961682 @default.
- W4221076030 hasConceptScore W4221076030C116834253 @default.
- W4221076030 hasConceptScore W4221076030C119857082 @default.
- W4221076030 hasConceptScore W4221076030C124101348 @default.
- W4221076030 hasConceptScore W4221076030C144024400 @default.
- W4221076030 hasConceptScore W4221076030C146849305 @default.
- W4221076030 hasConceptScore W4221076030C149923435 @default.
- W4221076030 hasConceptScore W4221076030C154945302 @default.
- W4221076030 hasConceptScore W4221076030C162324750 @default.
- W4221076030 hasConceptScore W4221076030C176217482 @default.
- W4221076030 hasConceptScore W4221076030C21547014 @default.
- W4221076030 hasConceptScore W4221076030C24756922 @default.
- W4221076030 hasConceptScore W4221076030C2908647359 @default.
- W4221076030 hasConceptScore W4221076030C41008148 @default.
- W4221076030 hasConceptScore W4221076030C42199009 @default.
- W4221076030 hasConceptScore W4221076030C48677424 @default.
- W4221076030 hasConceptScore W4221076030C59822182 @default.
- W4221076030 hasConceptScore W4221076030C60229501 @default.
- W4221076030 hasConceptScore W4221076030C76155785 @default.
- W4221076030 hasConceptScore W4221076030C79403827 @default.
- W4221076030 hasConceptScore W4221076030C86803240 @default.
- W4221076030 hasConceptScore W4221076030C99498987 @default.
- W4221076030 hasFunder F4320335777 @default.
- W4221076030 hasLocation W42210760301 @default.
- W4221076030 hasOpenAccess W4221076030 @default.
- W4221076030 hasPrimaryLocation W42210760301 @default.
- W4221076030 hasRelatedWork W2124491466 @default.
- W4221076030 hasRelatedWork W2899848438 @default.
- W4221076030 hasRelatedWork W2961085424 @default.