Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221092241> ?p ?o ?g. }
- W4221092241 endingPage "247" @default.
- W4221092241 startingPage "237" @default.
- W4221092241 abstract "There lacks an automated decision-making method for soil conditioning of EPBM with high accuracy and efficiency that is applicable to changeable geological conditions and takes drive parameters into consideration. A hybrid method of Gradient Boosting Decision Tree (GBDT) and random forest algorithm to make decisions on soil conditioning using foam is proposed in this paper to realize automated decision-making. Relevant parameters include decision parameters (geological parameters and drive parameters) and target parameters (dosage of foam). GBDT, an efficient algorithm based on decision tree, is used to determine the weights of geological parameters, forming 3 parameters sets. Then 3 decision-making models are established using random forest, an algorithm with high accuracy based on decision tree. The optimal model is obtained by Bayesian optimization. It proves that the model has obvious advantages in accuracy compared with other methods. The model can realize real-time decision-making with high accuracy under changeable geological conditions and reduce the experiment cost." @default.
- W4221092241 created "2022-04-03" @default.
- W4221092241 creator A5015860750 @default.
- W4221092241 creator A5020470277 @default.
- W4221092241 creator A5036808972 @default.
- W4221092241 creator A5053751451 @default.
- W4221092241 creator A5076674902 @default.
- W4221092241 creator A5085352453 @default.
- W4221092241 date "2022-06-30" @default.
- W4221092241 modified "2023-09-26" @default.
- W4221092241 title "A machine learning method for soil conditioning automated decision-making of EPBM : hybrid GBDT and Random Forest Algorithm" @default.
- W4221092241 cites W1438135033 @default.
- W4221092241 cites W1678356000 @default.
- W4221092241 cites W1875028359 @default.
- W4221092241 cites W2020936277 @default.
- W4221092241 cites W2042969561 @default.
- W4221092241 cites W2061291983 @default.
- W4221092241 cites W2065109455 @default.
- W4221092241 cites W2068978093 @default.
- W4221092241 cites W2078696150 @default.
- W4221092241 cites W2131868337 @default.
- W4221092241 cites W2145862305 @default.
- W4221092241 cites W2200000192 @default.
- W4221092241 cites W2267269562 @default.
- W4221092241 cites W2586297576 @default.
- W4221092241 cites W2591502885 @default.
- W4221092241 cites W2774956026 @default.
- W4221092241 cites W2799732812 @default.
- W4221092241 cites W2808285930 @default.
- W4221092241 cites W2810352628 @default.
- W4221092241 cites W2911064718 @default.
- W4221092241 cites W2911616853 @default.
- W4221092241 cites W2920302751 @default.
- W4221092241 cites W2949192518 @default.
- W4221092241 cites W2970689053 @default.
- W4221092241 cites W3008938599 @default.
- W4221092241 cites W3009108517 @default.
- W4221092241 cites W3021871364 @default.
- W4221092241 cites W3025170381 @default.
- W4221092241 cites W3034882408 @default.
- W4221092241 cites W3194833849 @default.
- W4221092241 cites W4312388825 @default.
- W4221092241 doi "https://doi.org/10.17531/ein.2022.2.5" @default.
- W4221092241 hasPublicationYear "2022" @default.
- W4221092241 type Work @default.
- W4221092241 citedByCount "1" @default.
- W4221092241 countsByYear W42210922412022 @default.
- W4221092241 crossrefType "journal-article" @default.
- W4221092241 hasAuthorship W4221092241A5015860750 @default.
- W4221092241 hasAuthorship W4221092241A5020470277 @default.
- W4221092241 hasAuthorship W4221092241A5036808972 @default.
- W4221092241 hasAuthorship W4221092241A5053751451 @default.
- W4221092241 hasAuthorship W4221092241A5076674902 @default.
- W4221092241 hasAuthorship W4221092241A5085352453 @default.
- W4221092241 hasBestOaLocation W42210922411 @default.
- W4221092241 hasConcept C10229987 @default.
- W4221092241 hasConcept C107673813 @default.
- W4221092241 hasConcept C11413529 @default.
- W4221092241 hasConcept C119857082 @default.
- W4221092241 hasConcept C120136583 @default.
- W4221092241 hasConcept C124101348 @default.
- W4221092241 hasConcept C126255220 @default.
- W4221092241 hasConcept C154945302 @default.
- W4221092241 hasConcept C169258074 @default.
- W4221092241 hasConcept C33923547 @default.
- W4221092241 hasConcept C41008148 @default.
- W4221092241 hasConcept C46686674 @default.
- W4221092241 hasConcept C5481197 @default.
- W4221092241 hasConcept C84525736 @default.
- W4221092241 hasConceptScore W4221092241C10229987 @default.
- W4221092241 hasConceptScore W4221092241C107673813 @default.
- W4221092241 hasConceptScore W4221092241C11413529 @default.
- W4221092241 hasConceptScore W4221092241C119857082 @default.
- W4221092241 hasConceptScore W4221092241C120136583 @default.
- W4221092241 hasConceptScore W4221092241C124101348 @default.
- W4221092241 hasConceptScore W4221092241C126255220 @default.
- W4221092241 hasConceptScore W4221092241C154945302 @default.
- W4221092241 hasConceptScore W4221092241C169258074 @default.
- W4221092241 hasConceptScore W4221092241C33923547 @default.
- W4221092241 hasConceptScore W4221092241C41008148 @default.
- W4221092241 hasConceptScore W4221092241C46686674 @default.
- W4221092241 hasConceptScore W4221092241C5481197 @default.
- W4221092241 hasConceptScore W4221092241C84525736 @default.
- W4221092241 hasIssue "2" @default.
- W4221092241 hasLocation W42210922411 @default.
- W4221092241 hasOpenAccess W4221092241 @default.
- W4221092241 hasPrimaryLocation W42210922411 @default.
- W4221092241 hasRelatedWork W3100297620 @default.
- W4221092241 hasRelatedWork W3126325819 @default.
- W4221092241 hasRelatedWork W3204641204 @default.
- W4221092241 hasRelatedWork W3210696866 @default.
- W4221092241 hasRelatedWork W4281887347 @default.
- W4221092241 hasRelatedWork W4296081764 @default.
- W4221092241 hasRelatedWork W4308191010 @default.
- W4221092241 hasRelatedWork W4318350883 @default.
- W4221092241 hasRelatedWork W4319718059 @default.
- W4221092241 hasRelatedWork W4382701299 @default.
- W4221092241 hasVolume "24" @default.