Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221092976> ?p ?o ?g. }
- W4221092976 endingPage "131285" @default.
- W4221092976 startingPage "131285" @default.
- W4221092976 abstract "One of the largest sources of greenhouse gas (GHG) emissions is the construction concrete industry which has alone 50% of the world's emissions. One possible remedy to mitigate the effect of environmental issues is the use of waste and recycled material in concrete. Today, immense agricultural waste is being used as a substitute for cement in the production of sustainable concrete. Therefore, this study is aimed to predict and develop an empirical formula of the compressive strength of rice husk ash (RHA) concrete using machine learning algorithms. Methods employed in this study includes gene expression programming (GEP) and Random Forest Regression (RFR). A reliable database of 192 data points was employed for developing the models. Most influential variables including age, cement, rice husk ash, water, super plasticizer, and aggregate were employed as input parameters in the development of RHA-based concrete models. Evaluation of models was performed using different statistical parameters. These statistical measures include mean absolute error (MAE), coefficient of determination (R2), performance index (ρ), root man square error (RMSE), relative squared error (RSE) and relative root mean square (RRMSE). The GEP model outperforms the RFR ensemble model in terms of robustness, with a greater correlation of R2 = 0.96 compared to RFR's R2 = 0.91. Ensemble modeling showed an enhancement of 1.62 percent for RFR compressive strength model when compared with individual RFR compressive strength model as illustrated by statistical parameters. Moreover, GEP model shows an enhancement of 37.33 percent in average error with an average error 2.35 MPa as compared to RFR model with average error of about 3.75 MPa. Cross validation was used as external check to avoid overfitting issues of the models and confirm the generalized model output. Parametric analysis was performed to determine the impact of the input parameters on the output. Cement and age were shown to have a substantial impact on the compressive strength of RHA concrete using sensitivity analysis." @default.
- W4221092976 created "2022-04-03" @default.
- W4221092976 creator A5012100431 @default.
- W4221092976 creator A5025950995 @default.
- W4221092976 creator A5034592458 @default.
- W4221092976 creator A5044569955 @default.
- W4221092976 creator A5048912804 @default.
- W4221092976 creator A5057578694 @default.
- W4221092976 creator A5058875606 @default.
- W4221092976 creator A5070582665 @default.
- W4221092976 creator A5085896504 @default.
- W4221092976 date "2022-05-01" @default.
- W4221092976 modified "2023-10-11" @default.
- W4221092976 title "Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison" @default.
- W4221092976 cites W1501527461 @default.
- W4221092976 cites W1549119093 @default.
- W4221092976 cites W1852701695 @default.
- W4221092976 cites W1978855141 @default.
- W4221092976 cites W1980352449 @default.
- W4221092976 cites W1983735453 @default.
- W4221092976 cites W1983946787 @default.
- W4221092976 cites W1988214175 @default.
- W4221092976 cites W1992749124 @default.
- W4221092976 cites W1992989454 @default.
- W4221092976 cites W1998253841 @default.
- W4221092976 cites W2009392275 @default.
- W4221092976 cites W2011580004 @default.
- W4221092976 cites W2038808304 @default.
- W4221092976 cites W2048397309 @default.
- W4221092976 cites W2063629125 @default.
- W4221092976 cites W2094749864 @default.
- W4221092976 cites W2095795470 @default.
- W4221092976 cites W2096185550 @default.
- W4221092976 cites W2103614020 @default.
- W4221092976 cites W2114762030 @default.
- W4221092976 cites W2163572179 @default.
- W4221092976 cites W2195671126 @default.
- W4221092976 cites W2234671309 @default.
- W4221092976 cites W2240074784 @default.
- W4221092976 cites W2268854783 @default.
- W4221092976 cites W2277974698 @default.
- W4221092976 cites W2346584898 @default.
- W4221092976 cites W2361126465 @default.
- W4221092976 cites W2406312152 @default.
- W4221092976 cites W2418319674 @default.
- W4221092976 cites W2464559489 @default.
- W4221092976 cites W2551200462 @default.
- W4221092976 cites W2608710759 @default.
- W4221092976 cites W2610090978 @default.
- W4221092976 cites W2614109333 @default.
- W4221092976 cites W2619220912 @default.
- W4221092976 cites W2769217008 @default.
- W4221092976 cites W2769363081 @default.
- W4221092976 cites W2791043882 @default.
- W4221092976 cites W2803217730 @default.
- W4221092976 cites W2807464630 @default.
- W4221092976 cites W281956797 @default.
- W4221092976 cites W2890167402 @default.
- W4221092976 cites W2890723144 @default.
- W4221092976 cites W2898870023 @default.
- W4221092976 cites W2900511825 @default.
- W4221092976 cites W2903144392 @default.
- W4221092976 cites W2906605132 @default.
- W4221092976 cites W2913738582 @default.
- W4221092976 cites W2914709022 @default.
- W4221092976 cites W2925700532 @default.
- W4221092976 cites W2927872289 @default.
- W4221092976 cites W2947916931 @default.
- W4221092976 cites W2952852102 @default.
- W4221092976 cites W2955558066 @default.
- W4221092976 cites W2964938350 @default.
- W4221092976 cites W2977280727 @default.
- W4221092976 cites W3003806916 @default.
- W4221092976 cites W3007270451 @default.
- W4221092976 cites W3008408706 @default.
- W4221092976 cites W3008792914 @default.
- W4221092976 cites W3009211770 @default.
- W4221092976 cites W3009520784 @default.
- W4221092976 cites W3014279432 @default.
- W4221092976 cites W3015837740 @default.
- W4221092976 cites W3021707848 @default.
- W4221092976 cites W3038033549 @default.
- W4221092976 cites W3081342661 @default.
- W4221092976 cites W3082907117 @default.
- W4221092976 cites W3093775993 @default.
- W4221092976 cites W3094556934 @default.
- W4221092976 cites W3100331146 @default.
- W4221092976 cites W3106904052 @default.
- W4221092976 cites W3118600497 @default.
- W4221092976 cites W3125850143 @default.
- W4221092976 cites W3126997349 @default.
- W4221092976 cites W3147191068 @default.
- W4221092976 cites W3159185355 @default.
- W4221092976 cites W3201171549 @default.
- W4221092976 cites W4230989021 @default.
- W4221092976 doi "https://doi.org/10.1016/j.jclepro.2022.131285" @default.
- W4221092976 hasPublicationYear "2022" @default.
- W4221092976 type Work @default.